Skip to main content

Applications of Medical Image Processing in the Diagnosis and Treatment of Spinal Deformity

  • Chapter
  • First Online:
Medical Image Processing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Spinal deformities are a group of disorders characterized by abnormal curvature of the spine. In the healthy spine, natural curves occur in the sagittal plane, with a lordosis (concave curvature) in the lower back (lumbar) region and kyphosis (convex curvature) in the upper back (thoracic) region. In some spinal deformities, these natural curves can be either suppressed or amplified, as in the case of hypokyphosis (flatback) or hyperkyphosis (exaggerated thoracic curvature or ‘hunchback’). However, the most common type of deformity is scoliosis, which is defined as abnormal lateral (side to side) curvature of the spine accompanied by axial rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The major curve is defined as the curve with the largest Cobb angle in a scoliotic spine. Typically, adolescent idiopathic scoliosis major curves are convex to the right in the mid-thoracic spine, with smaller (minor) curves above and below, convex to the left.

  2. 2.

    Note that the measurements described in this sub-study were performed before the main study, so there was no bias in the selection of the 12 patients based on the results from the entire patient group.

References

  1. Nash, C.L. Jr., Gregg, E.C., Brown, R.H., et al.: Risks of exposure to X-rays in patients undergoing long-term treatment for scoliosis. J. Bone Joint Surg Am. 61, 371–374 (1979)

    Google Scholar 

  2. Levy, A.R., Goldberg, M.S., Mayo, N.E., et al.: Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine (Phila. Pa. 1976) 21, 1540–1547 (1996); discussion 1548

    Google Scholar 

  3. Kamimura, M., Kinoshita, T., Itoh, H., et al.: Preoperative CT examination for accurate and safe anterior spinal instrumentation surgery with endoscopic approach. J. Spinal Disord. Tech. 15, 47–51 (2002); discussion 51–42

    Google Scholar 

  4. Abul-Kasim, K., Overgaard, A., Maly, P., et al.: Low-dose helical computed tomography (CT) in the perioperative workup of adolescent idiopathic scoliosis. Eur. Radiol. 19, 610–618 (2009)

    Article  Google Scholar 

  5. Aaro, S., Dahlborn, M.: Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer tomography. Spine 6, 460–467 (1981)

    Article  Google Scholar 

  6. Ho, E.K., Upadhyay, S.S., Ferris, L., et al.: A comparative study of computed tomographic and plain radiographic methods to measure vertebral rotation in adolescent idiopathic scoliosis. Spine 17, 771–774 (1992)

    Article  Google Scholar 

  7. Krismer, M., Sterzinger, W., Haid, C., et al.: Axial rotation measurement of scoliotic vertebrae by means of computed tomography scans. Spine 21, 576–581 (1996)

    Article  Google Scholar 

  8. Krismer, M., Chen, A.M., Steinlechner, M., et al.: Measurement of vertebral rotation: a comparison of two methods based on CT scans. J. Spinal Disord. 12, 126–130 (1999)

    Article  Google Scholar 

  9. Gocen, S., Havitcioglu, H., Alici, E.: A new method to measure vertebral rotation from CT scans. Eur. Spine J. 8, 261–265 (1999)

    Article  Google Scholar 

  10. Adam, C.J., Askin, G.N.: Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine (Phila. Pa. 1976) 31, E80–E83 (2006)

    Google Scholar 

  11. Perie, D., Sales de Gauzy, J., Curnier, D., et al.: Intervertebral disc modeling using a MRI method: migration of the nucleus zone within scoliotic intervertebral discs. Magn. Reson. Imag. 19, 1245–1248 (2001)

    Google Scholar 

  12. Perie, D., Curnier, D., de Gauzy, J.S.: Correlation between nucleus zone migration within scoliotic intervertebral discs and mechanical properties distribution within scoliotic vertebrae. Magn. Reson. Imag. 21, 949–953 (2003)

    Article  Google Scholar 

  13. Violas, P., Estivalezes, E., Briot, J., et al.: Objective quantification of intervertebral disc volume properties using MRI in idiopathic scoliosis surgery. Magn. Reson. Imag. 25, 386–391 (2007)

    Article  Google Scholar 

  14. Wessberg, P., Danielson, B.I., Willen, J.: Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine (Phila. Pa. 1976) 31, 3039–3044 (2006)

    Google Scholar 

  15. Adam, C., Izatt, M., Askin, G.: Design and evaluation of an MRI compatible axial compression device for 3D assessment of spinal deformity and flexibility in AIS. Stud. Health Technol. Inform. 158, 38–43 (2010)

    Google Scholar 

  16. Willner, S.: Moiré topography for the diagnosis and documentation of scoliosis. Acta Orthop. Scand. 50, 295–302 (1979)

    Article  Google Scholar 

  17. Stokes, I.A., Moreland, M.S.: Measurement of the shape of the surface of the back in patients with scoliosis. The standing and forward-bending positions. J. Bone Joint Surg. Am. 69, 203–211 (1987)

    Google Scholar 

  18. Turner-Smith, A.R., Harris, J.D., Houghton, G.R., et al.: A method for analysis of back shape in scoliosis. J. Biomech. 21, 497–509 (1988)

    Article  Google Scholar 

  19. Weisz, I., Jefferson, R.J., Turner-Smith, A.R., et al.: ISIS scanning: a useful assessment technique in the management of scoliosis. Spine (Phila. Pa. 1976) 13, 405–408 (1988)

    Google Scholar 

  20. Theologis, T.N., Fairbank, J.C., Turner-Smith, A.R., et al.: Early detection of progression in adolescent idiopathic scoliosis by measurement of changes in back shape with the integrated shape imaging system scanner. Spine 22, 1223–1227 (1997); discussion 1228

    Google Scholar 

  21. Hackenberg, L., Hierholzer, E., Potzl, W., et al.: Rasterstereographic back shape analysis in idiopathic scoliosis after posterior correction and fusion. Clin. Biomech. (Bristol, Avon) 18, 883–889 (2003)

    Google Scholar 

  22. Berryman, F., Pynsent, P., Fairbank, J., et al.: A new system for measuring three-dimensional back shape in scoliosis. Eur. Spine. J. 17, 663–672 (2008)

    Article  Google Scholar 

  23. Shannon, T.M.: Development of an apparatus to evaluate Adolescent Idiopathic Scoliosis by dynamic surface topography. Stud. Health Technol. Inform. 140, 121–127 (2008)

    Google Scholar 

  24. Zubovic, A., Davies, N., Berryman, F., et al.: New method of scoliosis deformity assessment: ISIS2 System. Stud. Health Technol. Inform. 140, 157–160 (2008)

    Google Scholar 

  25. Drerup, B., Ellger, B., Meyer zu Bentrup, F.M., et al.: Functional raster stereographic images: A new method for biomechanical analysis of skeletal geometry. Orthopade 30, 242–250 (2001)

    Google Scholar 

  26. Wong, H.K., Balasubramaniam, P., Rajan, U., et al.: Direct spinal curvature digitization in scoliosis screening – a comparative study with Moiré contourgraphy. J. Spinal Disord. 10, 185–192 (1997)

    Article  Google Scholar 

  27. Cobb, J.R.: Outline for the study of scoliosis. American Academy of Orthopedic Surgeons Instructional Course Lectures (1948)

    Google Scholar 

  28. Genant, H.K., Wu, C.Y., van Kuijk, C., et al.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner Res. 8, 1137–1148 (1993)

    Article  Google Scholar 

  29. Polly, D.W., Jr., Kilkelly, F.X., McHale, K.A., et al.: Measurement of lumbar lordosis. Evaluation of intraobserver, interobserver, and technique variability. Spine (Phila. Pa. 1976) 21, 1530–1535 (1996); discussion 1535–1536

    Google Scholar 

  30. Adam, C.J., Izatt, M.T., Harvey, J.R., et al.: Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine 30, 1664–1669 (2005)

    Article  Google Scholar 

  31. Ferguson, A.B.: Roentgen diagnosis of the extremities and spine, pp. 414–415. Hoeber, New York (1949)

    Google Scholar 

  32. Diab, K.M., Sevastik, J.A., Hedlund, R., et al.: Accuracy and applicability of measurement of the scoliotic angle at the frontal plane by Cobb’s method, by Ferguson’s method and by a new method. Eur. Spine J. 4, 291–295 (1995)

    Article  Google Scholar 

  33. Dougherty, G., Johnson, M.J.: Assessment of scoliosis by direct measurement of the curvature of the spine. Proc. SPIE 7260, 72603Q (2009). doi:10.1117/12.806655

    Article  Google Scholar 

  34. Stokes, I.A., Aronson, D.D., Ronchetti, P.J., et al.: Reexamination of the Cobb and Ferguson angles: Bigger is not always better. J. Spinal Disord. 6, 333–338 (1993)

    Article  Google Scholar 

  35. Gupta, M.C., Wijesekera, S., Sossan, A., et al.: Reliability of radiographic parameters in neuromuscular scoliosis. Spine 32, 691–695 (2007)

    Article  Google Scholar 

  36. Chockalingam, N., Dangerfield, P.H., Giakas, G., et al.: Computer-assisted Cobb measurement of scoliosis. Eur. Spine J. 11, 353–357 (2002)

    Article  Google Scholar 

  37. Cheung, J., Wever, D.J., Veldhuizen, A.G., et al.: The reliability of quantitative analysis on digital images of the scoliotic spine. Eur. Spine J. 11, 535–542 (2002)

    Article  Google Scholar 

  38. Zhang, J., Lou, E., Hill, D.L., et al.: Computer-aided assessment of scoliosis on posteroanterior radiographs. Med. Biol. Eng. Comput. 48, 185–195 (2010)

    Article  Google Scholar 

  39. Stokes, I.A., Aronsson, D.D.: Computer-assisted algorithms improve reliability of King classification and Cobb angle measurement of scoliosis. Spine 31, 665–670 (2006)

    Article  Google Scholar 

  40. Gerard, O., Lelong, P., Planells-Rodriguez, M., et al.: Semi-automatic landmark detection in digital X-ray images of the spine. Stud. Health Technol. Inform. 88, 132–135 (2002)

    Google Scholar 

  41. Mitchell, H.L., Ang, K.S.: Non-rigid surface shape registration to monitor change in back surface topography. Stud. Health Technol. Inform. 158, 29–33 (2010)

    Google Scholar 

  42. Hart, W.E., Goldbaum, M., Cote, B., et al.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53, 239–252 (1999)

    Article  Google Scholar 

  43. Dougherty, G., Varro, J.: A quantitative index for the measurement of the tortuosity of blood vessels. Med. Eng. Phys. 22, 567–574 (2000)

    Article  Google Scholar 

  44. Bullitt, E., Gerig, G., Pizer, S.M., et al.: Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imag. 22, 1163–1171 (2003)

    Article  Google Scholar 

  45. Johnson, M.J., Dougherty, G.: Robust measures of three-dimensional vascular tortuosity based on the minimum curvature of approximating polynomial spline fits to the vessel mid-line. Med. Eng. Phys. 29, 677–690 (2007)

    Article  Google Scholar 

  46. Dougherty, G., Johnson, M.J.: Clinical validation of three-dimensional tortuosity metrics based on the minimum curvature of approximating polynomial splines. Med. Eng. Phys. 30, 190–198 (2008)

    Article  Google Scholar 

  47. Dougherty, G., Johnson, M.J., Wiers, M.D.: Measurement of retinal vascular tortuosity and its application to retinal pathologies. Med. Biol. Eng. Comput. 48, 87–95 (2010)

    Article  Google Scholar 

  48. Capowski, J.J., Kylstra, J.A., Freedman, S.F.: A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina 15, 490–500 (1995)

    Google Scholar 

  49. Grisan, E., Foracchia, M., Ruggeri, A.: A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imag. 27, 310–319 (2008)

    Article  Google Scholar 

  50. Wallace, D.K.: Computer-assisted quantification of vascular tortuosity in retinopathy of prematurity. Trans. Am. Ophthalmol. Soc. 105, 594–615 (2007)

    Google Scholar 

  51. Benhamou, S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220 (2004)

    Article  MathSciNet  Google Scholar 

  52. Smedby, O., Hogman, N., Nilsson, S., et al.: Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30, 181–191 (1993)

    Article  Google Scholar 

  53. Kimball, B.P., Bui, S., Dafopoulos, N.: Angiographic features associated with acute coronary artery occlusion during elective angioplasty. Can. J. Cardiol. 6, 327–332 (1990)

    Google Scholar 

  54. Brinkman, A.M., Baker, P.B., Newman, W.P., et al.: Variability of human coronary artery geometry: an angiographic study of the left anterior descending arteries of 30 autopsy hearts. Ann. Biomed. Eng. 22, 34–44 (1994)

    Article  Google Scholar 

  55. Patasius, M., Marozas, V., Lukosevicius, A., et al.: Model based investigation of retinal vessel tortuosity as a function of blood pressure: Preliminary results. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 6460–6463 (2007)

    Google Scholar 

  56. Kamimura, M., Kinoshita, T., Itoh, H., et al.: Preoperative CT examination for accurate and safe anterior spinal instrumentation surgery with endoscopic approach. J. Spinal Disord. Tech. 15, 47–51 (2002)

    Article  Google Scholar 

  57. Schick, D.: Computed tomography radiation doses for paediatric scoliosis scans. Internal report commissioned by QUT/Mater Health Services Paediatric Spine Research Group from Queensland Health Biomedical Technology Services (2004)

    Google Scholar 

  58. Torell, G., Nachemson, A., Haderspeck-Grib, K., et al.: Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine 10, 425–427 (1985)

    Article  Google Scholar 

  59. Yazici, M., Acaroglu, E.R., Alanay, A., et al.: Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J. Pediatr. Orthop. 21, 252–256 (2001)

    Article  Google Scholar 

  60. Krawczynski, A., Kotwicki, T., Szulc, A., et al.: Clinical and radiological assessment of vertebral rotation in idiopathic scoliosis. Ortop. Traumatol. Rehabil. 8, 602–607 (2006)

    Google Scholar 

  61. Little, J.P., Adam, C.J.: The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine 34, E76–82 (2009)

    Article  Google Scholar 

  62. King, H.A., Moe, J.H., Bradford, D.S., et al..: The selection of fusion levels in thoracic idiopathic scoliosis. J. Bone Joint Surg. Am. 65, 1302–1313 (1983)

    Google Scholar 

  63. Lenke, L.G., Betz, R.R., Harms, J., et al.: Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J. Bone Joint Surg. Am. 83-A, 1169–1181 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adam, C., Dougherty, G. (2011). Applications of Medical Image Processing in the Diagnosis and Treatment of Spinal Deformity. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9779-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9769-2

  • Online ISBN: 978-1-4419-9779-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics