Electrophoretic Deposition of Nanostructured Electroactive Materials

  • Tao Li
  • Chen Yanhong
  • Jan Ma
Part of the Nanostructure Science and Technology book series (NST)


Electrophoretic deposition (EPD) has shown huge potential in the fabrication of functional materials. In this work, its application to the forming of piezoelectric actuators and nanostructured electrochromic devices were introduced and discussed. For the piezoelectric actuators, three kinds of actuator configurations, namely, piezo tube, piezo helix and functionally graded materials (FGM) monomorph, were investigated. The preparation and characterization of Pb(Zr,Ti)O3 (PZT) suspensions was first introduced. Then the deposition procedure and property characterization of the actuator were reviewed and discussed. Finally applications of the EPD fabricated devices were introduced. Different deposition techniques were applied for the different configurations. The piezo tube is monolithic and hence the method of one-time deposition was applied. In contrast, piezo helix and monomorph have complicated structures. As a result, double and multiple deposition techniques were applied respectively. The results have shown that EPD is a good technique to fabricate piezoelectric devices with miniaturized dimensions and complicated structures. EPD also exhibits advantages, such as simple procedure, low cost and reliable quality, in the coating of functional materials. The present work reports the deposition of hydrothermally synthesized crystalline tungsten oxide (WO3) nanorods onto ITO glass for electrochromic applications as an example.


Functionally Grade Material Piezoelectric Actuator Tungsten Oxide Electrophoretic Deposition Functionally Grade Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li, T.: Development of piezoelectric tubes for micromotor. PhD thesis, Nanyang Technological University (2004)Google Scholar
  2. 2.
    Li, T., Chen, Y.H., Ma, J.: Frequency dependence of piezoelectric vibration velocity. Sensors. Actuat. A. 138, 404–410 (2007)CrossRefGoogle Scholar
  3. 3.
    Li, T., Chen, Y.H., Ma, J.: Factors affecting the performance of piezoelectric bending actuators for advanced applications: an overview. J. Mater. Sci. 44, 5393–5407 (2009)CrossRefGoogle Scholar
  4. 4.
    Li, T., Chen, Y.H., Ma, J.: Development of a miniaturized piezoelectric ultrasonic transducer. IEEE Trans. Ultrson. Ferroelectr. Freq. Control. 56, 649–659 (2009)CrossRefGoogle Scholar
  5. 5.
    Chen, Y.H.: Electrophoretic deposition of advanced ceramic actuator. PhD thesis, Nanyang Technological University (2005)Google Scholar
  6. 6.
    Cheng, Wen: Electrophoretic deposition of advanced ceramics. Master thesis, Nanyang Technological University (2000)Google Scholar
  7. 7.
    Li, T., Ma, J.: Study of piezoelectric tubular transducers. Mater. Sci. Forum. 437–438, 491–494 (2003)CrossRefGoogle Scholar
  8. 8.
    Li, T., Ma, J., Chen, Y.H.: A piezoelectric tube with a double-layer configuration. Ceram. Int. 30, 1803–1805 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, T., Ma, J., Chen, Y.H.: Fabrication and performance of piezoelectric tubes for cylindrical ultrasonic micromotor. Ferroelectrics 315, 111–121 (2005)CrossRefGoogle Scholar
  10. 10.
    Li, T., Chen, Y.H., Ma, J. et al.: Metal-PZT composite piezoelectric transducers and ultrasonic motors. Key. Eng. Mater. 334–335, 1073–1076 (2007)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Li, T., Chen, Y.H. et al.: Piezoelectric materials for biomedical applications. Key. Eng. Mater. 334–335, 1117–1120 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, Y.H., Li, T., Ma, J. et al.: Electrophoretic deposition and characterization of helical piezoelectric actuator. Ceram. Int. 34, 1–6 (2008)CrossRefGoogle Scholar
  13. 13.
    Chen, Y.H., Li, T., Ma, J.: Investigation on the electrophoretic deposition of a FGM piezoelectric monomorph actuator. J. M. Sci. 38, 2803–2807 (2003)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.H., Ma, J.: Electrophoretic deposition and characterization of a FGM piezoelectric monomorph actuator. Mater. Sci. Forum. 437–438, 487–490 (2003)CrossRefGoogle Scholar
  15. 15.
    Chen, Y.H., Ma, J., Li, T.: A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition. Ceram. Int. 30, 683–687 (2004)CrossRefGoogle Scholar
  16. 16.
    Chen, Y.H., Ma, J., Li, T.: Electrophoretic deposition and characterization of a piezoelectric FGM monomorph actuator. Ceram. Int. 30, 1807–1809 (2004)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.H., Li, T., Ma, J.: Development of piezoelectric monomorph actuator using electrophoretic deposition. J. M. Sci. 41, 8079–8085 (2006)CrossRefGoogle Scholar
  18. 18.
    Chen, Y.H., Li, T., Ma, J.: Electrophoretic deposition of functionally graded monomorph. Key. Eng. Mater. 314, 89–93 (2006)CrossRefGoogle Scholar
  19. 19.
    Chen, Y.H., Li, T., Ma, J. et al.: Development of FGM monomorph actuator for impedance pump application. Key. Eng. Mater. 334–335, 1077–1080 (2007)CrossRefGoogle Scholar
  20. 20.
    Li, T., Chen, Y.H., Ma, J.: Characterization of FGM monomorph actuators fabricated using EPD. J. M. Sci 40, 3601–3605 (2005)CrossRefGoogle Scholar
  21. 21.
    Khoo, E., Lee, P.S., Ma, J.: Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application. J. Eur. Ceram. Soc. 30, 1139–1144 (2010)CrossRefGoogle Scholar
  22. 22.
    Jung, S.M., Jung, H.Y., Suh, J.S.: Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46, 1973–1977 (2008)CrossRefGoogle Scholar
  23. 23.
    Yui, T., Mori, T., Takagi, K.: Synthesis of photofunctional titania nonosheets by electrophoretic deposition. Chem. Mater. 17, 206–211 (2005)CrossRefGoogle Scholar
  24. 24.
    Ma, J., Cheng, W.: Electrophoretic deposition of PZT ceramics. J. Am. Ceram. Soc. 85, 1735–1737 (2002)CrossRefGoogle Scholar
  25. 25.
    Koura, N., Tsukamoto, T., Hotta, T.: Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn. J. Appl. Phys. 34, 1643–1647 (1995)CrossRefGoogle Scholar
  26. 26.
    Liao, C.C., Chen, F.R., Kai, J.J.: WO3-x nanowires based electrochromic devices. Sol. Energy. Mater. Sol. Cells. 90, 1147–1155 (2006)CrossRefGoogle Scholar
  27. 27.
    Joraid, A.A.: Comparison of electrochromic amorphous and crystalline electron beam deposited WO3 thin film. Curr. Appl. Phys. 9, 73–79 (2009)CrossRefGoogle Scholar
  28. 28.
    Sallard, S., Brezesinski, T., Smarsly, B.M.: Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J. Phys. Chem. C. 111, 7200–7206 (2007)CrossRefGoogle Scholar
  29. 29.
    Deepa, M., Singh, D.P., Agnihotry, S.A.: A comparison of electrochromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films. Curr. Appl. Phys. 7, 220–229 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tao Li
    • 1
  • Chen Yanhong
    • 1
  • Jan Ma
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations