Analyzing Stop-and-Go Waves by Experiment and Modeling

  • A. Portz
  • A. Seyfried
Conference paper


The main topic of this paper is the analysis and modeling of stop-andgo waves, observable in experiments of single lane movement with pedestrians. The velocity density relation using measurements on a ‘microscopic’ scale shows the coexistence of two phases at one density. These data are used to calibrate and verify a spatially continuous model. Several criteria are chosen that a model has to satisfy: firstly we investigated the fundamental diagram (velocity versus density) using different measurement methods. Furthermore the trajectories are compared to the occurrence of stop-and-go waves qualitatively. Finally we checked the distribution of the velocities at fixed density against the experimental one. The adaptive velocity model introduced satisfies these criteria well.


Voronoi Cell Safety Distance Double Peak Structure Fundamental Diagram Evacuation Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the German Government’s high-tech strategy, the Federal Ministry of Education and Research (BMBF). Program on "Research for Civil Security - Protecting and Saving Human Life”. Execution of experiments was supported by the German Research Foundation (DFG) KL 1873/1-1 and SE 1789/1-1.


  1. 1.
    Hermes – Investigation of an evacuation assistant for use in emergencies during large-scale public events. Julich Supercomputing Centre (JSC). http://www.fzjuelich. de/jsc/hermes
  2. 2.
    Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications, In: Meyers, R.A (Ed.), Encyclopedia of Complexity and System Science, 3142-3176. Springer (2009)Google Scholar
  3. 3.
    Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (Eds.): Pedestrian and Evacuation Dynamics 2008, Springer (2010)Google Scholar
  4. 4.
    Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (Eds.): Pedestrian and Evacuation Dynamics 2005. Springer (2006)Google Scholar
  5. 5.
    Schadschneider, A., Seyfried, A.: Empirical Results for Pedestrian Dynamics and their Implications for Cellular AutomataModels. In: Timmermans, H. (Ed.) Pedestrian Behavior: Data Collection and Applications, p. 27-43. Emerald Group Publishing Limited (2009)Google Scholar
  6. 6.
    Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems. 12, 393-405 (2009)CrossRefGoogle Scholar
  7. 7.
    Portz, A., Seyfried, A.: Modeling Stop-and-Go Waves in Pedestrian Dynamics. In: PPAM 2009, Eighth international conference on parallel processing and applied mathematics. Wroclaw, Poland (2009) arXiv: 1001.3283 Google Scholar
  8. 8.
    Seyfried, A., Boltes M., Kähler, J., Klingsch, W., Portz, A., Schadschneider, A., Steffen, B., Winkens, A.: Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch, W.W.F, Rogsch, C., Schadschneider, A., Schreckenberg, M. (Eds.), Pedestrian and Evacuation Dynamics 2008, 145-156. Springer (2010)Google Scholar
  9. 9.
    Seyfried, A., Steffen, B., Kingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech., P10002 (2005)Google Scholar
  10. 10.
    Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic Extraction of Pedestrian Trajectories from Video Recordings. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (Eds.), Pedestrian and Evacuation Dynamics 2008, 43-54. Springer (2010)Google Scholar
  11. 11.
    Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A (2010). doi:10.1016/j.physa.2009.12.015Google Scholar
  12. 12.
    Chraibi, M., Seyfried, A.: Pedestrian Dynamics With Event-driven Simulation.In: Klingsch, W.W.F, Rogsch, C., Schadschneider, A., Schreckenberg, M. (Eds.), Pedestrian and Evacuation Dynamics 2008, 713-718. Springer (2010)Google Scholar
  13. 13.
    Weidmann, U.: Transporttechnik der Fussgänger. Institut für Verkehrsplanung,Transporttechnik, Strassen- und Eisenbahnbau. Schriftenreihe des IVT, Nr. 90. ETH Zürich (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Jülich Supercomputing Centre, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations