Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 995 Accesses

Abstract

The discovery that carbon based materials can efficiently conduct electricity is among the most significant findings in material science in the past several decades and spawned the field of organic or “plastic” electronics. The discovery of conducting polymers was made by physicist Professor Alan Heeger, and chemists Professor Alan MacDiarmid and Professor Hideki Shirakawa for which the three were awarded the Nobel Prize in chemistry in 2000. Plastics, along with conventional inorganic semiconductors like silicon, represent the two most significant materials breakthroughs in the past century. It would be impossible to imagine life without either. Organic electronics is a fascinating emerging branch of material science since its aim is to wed the benefits of these two classes of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99

    Article  CAS  Google Scholar 

  2. Bao Z, Locklin J (2007) Organic field effect transistors (ed. Group, C. P. T. a. F.)

    Google Scholar 

  3. Virkar A, Ling MM, Locklin J, Bao Z (2008) Oligothiophene based organic semiconductors with cross-linkable benzophenone moieties. Synth Metals 158:958–963

    Article  CAS  Google Scholar 

  4. Roberts ME, Sokolov AN, Bao ZN (2009) Material and device considerations for organic thin-film transistor sensors. J Mater Chem 19:3351–3363

    Article  CAS  Google Scholar 

  5. Bettinger CJ, Bao ZA (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651

    Article  CAS  Google Scholar 

  6. Ruiz R et al (2004) Pentacene thin film growth. Chem Mater 16:4497–4508

    Article  CAS  Google Scholar 

  7. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    Article  CAS  Google Scholar 

  8. Dimitrakopoulos CD, Mascaro DJ (2001) Organic thin-film transistors: a review of recent advances. Ibm J Res Dev 45:11–27

    Article  CAS  Google Scholar 

  9. Newman CR et al (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater 16:4436–4451

    Article  CAS  Google Scholar 

  10. Briseno AL et al (2006) Patterning organic single-crystal transistor arrays. Nature 444:913–917

    Article  CAS  Google Scholar 

  11. Chang PC, Molesa SE, Murphy AR, Frechet JMJ, Subramanian V (2006) Inkjetted crystalline single monolayer oligothiophene OTFTs. Ieee Trans Electron Devices 53:594–600

    Article  CAS  Google Scholar 

  12. Chua LL et al (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199

    Article  CAS  Google Scholar 

  13. Salleo A, Chabinyc ML, Yang MS, Street RA (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81:4383–4385

    Article  CAS  Google Scholar 

  14. Kelley TW et al (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16:4413–4422

    Article  CAS  Google Scholar 

  15. Park YD, Lim JA, Lee HS, Cho K (2007) Interface engineering in organic transistors. Mater Today 10:46–54

    Article  CAS  Google Scholar 

  16. Facchetti A, Yoon MH, Marks TJ (2005) Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater 17:1705–1725

    Article  CAS  Google Scholar 

  17. Roberts ME, Mannsfeld SCB, Stoltenberg RM, Bao ZN (2009) Flexible, plastic transistor-based chemical sensors. Org Electron 10:377–383

    Article  CAS  Google Scholar 

  18. Eder F et al (2004) Organic electronics on paper. Appl Phys Lett 84:2673–2675

    Article  CAS  Google Scholar 

  19. Dinelli F et al (2004) Spatially correlated charge transport in organic thin film transistors. Phys Rev Lett 92 (116802):1–4

    Google Scholar 

  20. Dodabalapur A, Torsi L, Katz HE (1995) Organic Transistors - 2-dimensional transport and improved electrical characteristics. Science 268:270–271

    Article  CAS  Google Scholar 

  21. Gundlach DJ, Lin YY, Jackson TN, Nelson SF, Schlom DG (1997) Pentacene organic thin-film transistors - Molecular ordering and mobility. Ieee Electron Device Lett 18:87–89

    Article  CAS  Google Scholar 

  22. Kelley TW, Muyres DV, Baude PF, Smith TP, Jones TD (2003) High performance organic thin film transistors. In: Organic and Polymeric Materials and Devices. Symposium (Mater Res Soc Symposium Proceedings vol 771), 169–79|xiii + 409

    Google Scholar 

  23. Lee J et al (2009) Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J Phys Chem C 113:8972–8981

    Article  CAS  Google Scholar 

  24. Veres J, Ogier S, Lloyd G, De Leeuw D (2004) Gate insulators in organic field-effect transistors. Chem Mater 16:4543–4555

    Article  CAS  Google Scholar 

  25. Kim C, Facchetti A, Marks TJ (2007) Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science 318:76–80

    Article  CAS  Google Scholar 

  26. Knipp D, Street RA, Volkel A, Ho J (2003) Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J Appl Phys 93:347–355

    Article  CAS  Google Scholar 

  27. Li XC et al (1998) A highly pi-stacked organic semiconductor for thin film transistors based on fused thiophenes. J Am Chem Soc 120:2206–2207

    Article  CAS  Google Scholar 

  28. Mannsfeld SCB et al (2007) Selective nucleation of organic single crystals from vapor phase on nanoscopically rough surfaces. Adv Function Mater 17:3545–3553

    Article  CAS  Google Scholar 

  29. Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127:6960–6961

    Article  CAS  Google Scholar 

  30. Puigdollers J et al (2004) Pentacene thin-film transistors with polymeric gate dielectric. Org Electron 5:67–71

    Article  CAS  Google Scholar 

  31. Yoon MH, Facchetti A, Marks TJ (2005) Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors. In: Proceedings of the National Academy of Sciences of the United States of America, vol 102, pp 4678–4682

    Google Scholar 

  32. Brinkmann M et al (2003) Orienting tetracene and pentacene thin films onto friction-transferred poly(tetrafluoroethylene) substrate. J Phys Chem B 107:10531–10539

    Article  CAS  Google Scholar 

  33. Fritz SE, Kelley TW, Frisbie CD (2005) Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer. J Phys Chem B 109:10574–10577

    Article  CAS  Google Scholar 

  34. Heringdorf F, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517–520

    Article  Google Scholar 

  35. Ito Y et al (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131:9396–9404

    Article  CAS  Google Scholar 

  36. Markov I (2003) Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy. In: Scientific W (ed), 2nd edn, New Jersey

    Google Scholar 

  37. Verlaak S, Steudel S, Heremans P, Janssen D, Deleuze MS (2003) Nucleation of organic semiconductors on inert substrates. Phys Rev B 68

    Google Scholar 

  38. Xue HW, Moyle AM, Magee N, Harrington JY, Lamb D (2005) Experimental studies of droplet evaporation kinetics: Validation of models for binary and ternary aqueous solutions. J Atmospheric Sci 62:4310–4326

    Article  Google Scholar 

  39. Ohring M (2001) The material science of thin films. In: Press A (ed), 2nd edn, Orlando

    Google Scholar 

  40. Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin-films. Rep Prog Phys 47:399–459

    Article  Google Scholar 

  41. Northrup JE, Tiago ML, Louie SG (2002) Surface energetics and growth of pentacene. Phys Rev B (Condensed matter and materials physics) 66: 121404-1–121404-14

    Google Scholar 

  42. Virkar A et al (2009) The role of OTS density on Pentacene and C-60 nucleation, thin film growth, and transistor performance. Adv Funct Mater 19:1962–1970

    Article  CAS  Google Scholar 

  43. Schreiber F (2004) Organic molecular beam deposition: Growth studies beyond the first monolayer. Phys Status Solidi Appl Res 201:1037–1054

    Article  CAS  Google Scholar 

  44. Amar JG, Family F (1995) Critical cluster-size - island morphology and size distribution in submonolayer epitaxial-growth. Phys Rev Lett 74:2066–2069

    Article  CAS  Google Scholar 

  45. Brinkmann M, Pratontep S, Contal C (2006) Correlated and non-correlated growth kinetics of pentacene in the sub-monolayer regime. Surf Sci 600:4712–4716

    Article  CAS  Google Scholar 

  46. Frankl DR, Venables JA (1970) Nucleation on substrates from vapour phase. Adv Phys 19:409

    Article  CAS  Google Scholar 

  47. Pratontep S, Brinkmann M, Nuesch F, Zuppiroli L (2004) Correlated growth in ultrathin pentacene films on silicon oxide: effect of deposition rate. Phys Rev B 69:165201–165208

    Article  Google Scholar 

  48. Pratontep S, Brinkmann M, Nuesch F, Zuppiroli L (2004) Nucleation and growth of ultrathin pentacene films on silicon dioxide: effect of deposition rate and substrate temperature. Synth Metals 146:387–391

    Article  CAS  Google Scholar 

  49. Pratontep S, Nuesch F, Zuppiroli L, Brinkmann M (2005) Comparison between nucleation of pentacene monolayer islands on polymeric and inorganic substrates. Phys Rev B 72:085211–0852216

    Article  Google Scholar 

  50. Ruiz R et al (2003) Dynamic scaling, island size distribution, and morphology in the aggregation regime of submonolayer pentacene films. Phys Rev Lett 91(136102):1–4

    Google Scholar 

  51. Venables JA et al (1973) Rate equation approaches to thin-film nucleation kinetics. Philos Mag 27:697–738

    Article  CAS  Google Scholar 

  52. Zinsmeis G (1969) Theory of thin film condensation.C. aggregate size distribution in island films. Thin Solid Films 4:363

    Article  Google Scholar 

  53. Zinsmeister G (1966) A contribution to Frenkel’s theory of condensation. Vacuum 16:529

    Article  CAS  Google Scholar 

  54. Yang HC et al (2005) Conducting AFM and 2D GIXD studies on pentacene thin films. J Am Chem Soc 127:11542–11543

    Article  CAS  Google Scholar 

  55. Steudel S, Janssen D, Verlaak S, Genoe J, Heremans P (2004) Patterned growth of pentacene. Appl Phys Lett 85:5550–5552

    Article  CAS  Google Scholar 

  56. Steudel S et al (2004) Influence of the dielectric roughness on the performance of pentacene transistors. Appl Phys Lett 85:4400–4402

    Article  CAS  Google Scholar 

  57. Choudhary D, Clancy P, Bowler DR (2005) Adsorption of pentacene on a silicon surface. Surf Sci 578:20–26

    Article  CAS  Google Scholar 

  58. Choudhary D, Clancy P, Shetty R, Escobedo F (2006) A computational study of the sub-monolayer growth of pentacene. Adv Funct Mater 16:1768–1775

    Article  CAS  Google Scholar 

  59. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J Am Chem Soc 126:4084–4085

    Article  CAS  Google Scholar 

  60. Mannsfeld SCB, Virkar A, Reese C, Toney MF, Bao ZN (2009) Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv Mater 21:2294

    Article  CAS  Google Scholar 

  61. Ruiz R et al (2004) Structure of pentacene thin films. Appl Phys Lett 85:4926–4928

    Article  CAS  Google Scholar 

  62. Chen ZX, Ikeda S, Saiki K (2006) Sexithiophene films on cleaved KBr(100) towards well-ordered semiconducting films. Mater Sci Eng B-Solid State Mater Adv Technol 133:195–199

    Article  CAS  Google Scholar 

  63. Era M, Tsutsui T, Saito S (1995) Polarized electroluminescence from oriented p-sexiphenyl vacuum-deposited film. Appl Phys Lett 67:2436–2438

    Article  CAS  Google Scholar 

  64. Halik M et al (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15:917

    Article  CAS  Google Scholar 

  65. Horowitz G, Hajlaoui ME (2000) Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv Mater 12:1046–1050

    Article  CAS  Google Scholar 

  66. Li RJ et al (2009) Micrometer- and nanometer-sized, single-crystalline ribbons of a cyclic triphenylamine dimer and their application in organic transistors. Adv Mater 21:1605

    Article  Google Scholar 

  67. Ling MM et al (2007) Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater 19:1123–1127

    Article  CAS  Google Scholar 

  68. Liu SH et al (2009) Patterning of alpha-Sexithiophene single crystals with precisely controlled sizes and shapes. Chem Mater 21:15–17

    Article  Google Scholar 

  69. Liu YL et al (2006) Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J Am Chem Soc 128:12917–12922

    Article  CAS  Google Scholar 

  70. Loi MA et al (2005) Supramolecular organization in ultra-thin films of alpha-sexithiophene on silicon dioxide. Nature Mater 4:81–85

    Article  CAS  Google Scholar 

  71. Dimitrakopoulos CD, Brown AR, Pomp A (1996) Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J Appl Phys 80:2501–2508

    Article  CAS  Google Scholar 

  72. Cantrell R, Clancy P (2008) A computational study of surface diffusion of C-60 on pentacene. Surf Sci 602:3499–3505

    Article  CAS  Google Scholar 

  73. Engstrom JR, Goose JE, Killampalli A, Clancy P (2009) Molecular-scale events in hyperthermal deposition of organic semiconductors implicated from experiment and molecular simulation. J Phys Chem C 113:6068–6073

    Article  Google Scholar 

  74. Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896

    Article  CAS  Google Scholar 

  75. Laquindanum JG, Katz HE, Dodabalapur A, Lovinger AJ (1996) n-channel organic transistor materials based on naphthalene frameworks. J Am Chem Soc 118:11331–11332

    Article  CAS  Google Scholar 

  76. Shtein M, Mapel J, Benziger JB, Forrest SR (2002) Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl Phys Lett 81:268–270

    Article  CAS  Google Scholar 

  77. Sirringhaus H et al (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  CAS  Google Scholar 

  78. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked pentacene layer organic thin-film transistors with improved characteristics. Ieee Electron Device Lett 18:606–608

    Article  CAS  Google Scholar 

  79. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Pentacene-based organic thin-film transistors. Ieee Trans Electron Devices 44:1325–1331

    Article  CAS  Google Scholar 

  80. Liu SH et al (2007) Selective crystallization of organic semiconductors on patterned templates of carbon nanotubes. Adv Funct Mater 17:2891–2896

    Article  CAS  Google Scholar 

  81. Knipp D, Street RA, Volkel AR (2003) Morphology and electronic transport of polycrystalline pentacene thin-film transistors. Appl Phys Lett 82:3907–3909

    Article  CAS  Google Scholar 

  82. Locklin J, Bao ZN (2006) Effect of morphology on organic thin film transistor sensors. Anal Bioanal Chem 384:336–342

    Article  CAS  Google Scholar 

  83. Schwoebe.Rl & Shipsey, E. J. Step Motion on Crystal Surfaces. Journal of Applied Physics 37, 3682-& (1966)

    Google Scholar 

  84. Shtein M et al (2002) Organic VPD shows promise for OLED volume production (vol 45, pg 131, 2002). Solid State Technol 45:18

    Google Scholar 

  85. Liu SH, Wang WCM, Briseno AL, Mannsfeld SCE, Bao ZN (2009) Controlled deposition of crystalline organic semiconductors for field-effect-transistor applications. Adv Mater 21:1217–1232

    Article  CAS  Google Scholar 

  86. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191

    Article  CAS  Google Scholar 

  87. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81: 109–162

    Google Scholar 

  88. Ebbesen TW et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  CAS  Google Scholar 

  89. Geng HZ et al (2008) Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. J Mater Chem 18:1261–1266

    Article  CAS  Google Scholar 

  90. Hellstrom SL, Lee HW, Bao ZN (2009) Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. Acs Nano 3:1423–1430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Virkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Virkar, A. (2012). Introduction to Organic Semiconductors, Transistors and Conductors. In: Investigating the Nucleation, Growth, and Energy Levels of Organic Semiconductors for High Performance Plastic Electronics. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9704-3_1

Download citation

Publish with us

Policies and ethics