Advertisement

Hypoxic Preconditioning in the CNS

  • Robert D. Gilchrist
  • Jeffrey M. GiddayEmail author
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

It is now well established that preconditioning the CNS with a variety of stressors can provide neuroprotection from stroke, subarachnoid and intracerebral hemorrhage, epilepsy, and trauma. However, it often remains unstated, and underappreciated, that the resultant ischemic tolerance involves more than just “neuroprotection” but likely involves primary and secondary cytoprotective responses on the part of all cells that comprise the neurovascular unit. This chapter reviews the evidence and molecular mechanisms that underlie vascular endothelial and smooth muscle cell responses to preconditioning, reflected by reductions in postischemic vascular inflammation, blood-brain barrier breakdown, and apoptotic death, along with the improvements in ischemic and postischemic blood flow, vascular reactivity, endothelium-dependent dilation, and other postischemic autoregulatory responses, which together promote an ischemia-tolerant cerebrovasculature. Angiogenesis and other longer-term mechanisms of vascular remodeling and recovery are also likely to contribute. In addition, data supporting the involvement of astrocytes, microglia, and oligodendrocytes in the globally cerebroprotective response to preconditioning, while still relatively limited to date, are examined. Overall, emerging findings suggest both autocrine and paracrine adaptive responses to preconditioning among the neurovascular unit and glial lineage cells that collectively contribute to reductions in lesion size and injury severity in several CNS pathologies.

Keywords

Vascular Endothelial Growth Factor Vascular Endothelial Growth Factor mRNA Ischemic Tolerance Hypoxic Precondition Neurovascular Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alkan T, Goren B, Vatansever E, Sarandol E (2008) Effects of hypoxic preconditioning in antioxidant enzyme activities in hypoxic-ischemic brain damage in immature rats. Turk Neurosurg 18:165–171PubMedGoogle Scholar
  2. Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43:473–485PubMedCrossRefGoogle Scholar
  3. Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180PubMedCrossRefGoogle Scholar
  4. Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9:11–22PubMedCrossRefGoogle Scholar
  5. Arthur PG, Lim SC, Meloni BP, Munns SE, Chan A, Knuckey NW (2004) The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res 1017:146–154PubMedCrossRefGoogle Scholar
  6. Bailey DM, Taudorf S, Berg RMG, Lundby C, Pedersen BK, Rasmussen P, Moller K (2011) Cerebral formation of free radicals during hypoxia does not cause structural damage and is associated with a reduction in mitochondrial PO2; evidence of O2-sensing in humans? J Cereb Blood Flow Metab 31:1020–1026PubMedCrossRefGoogle Scholar
  7. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332PubMedCrossRefGoogle Scholar
  8. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48:285–296PubMedCrossRefGoogle Scholar
  9. Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278PubMedCrossRefGoogle Scholar
  10. Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002a) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403PubMedCrossRefGoogle Scholar
  11. Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR (2002b) Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 277:39728–39738PubMedCrossRefGoogle Scholar
  12. Bickler PE, Fahlman CS (2009) Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures. Anesthesiology 111:258–266PubMedCrossRefGoogle Scholar
  13. Bickler PE, Fahlman CS (2010) Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors. Brain Res 1340:86–95PubMedCrossRefGoogle Scholar
  14. Bickler PE, Fahlman CS, Gray J, McKleroy W (2009) Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons. Neuroscience 160:51–60PubMedCrossRefGoogle Scholar
  15. Bickler PE, Fahlman CS, Gray JJ (2010) Hypoxic preconditioning failure in aging hippocampal neurons: impaired gene expression and rescue with intracellular calcium chelation. J Neurosci Res 88:3520–3529PubMedCrossRefGoogle Scholar
  16. Bruer U, Weih MK, Isaev NK, Meisel A, Ruscher K, Bergk A, Trendelenburg G, Wiegand F, Victorov IV, Dirnagl U (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 414:117–121PubMedCrossRefGoogle Scholar
  17. Bu X, Huang P, Qi Z, Zhang N, Han S, Fang L, Li J (2007) Cell type-specific activation of p38 MAPK in the brain regions of hypoxic preconditioned mice. Neurochem Int 51:459–466PubMedCrossRefGoogle Scholar
  18. Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356PubMedCrossRefGoogle Scholar
  19. Buck LT, Pamenter ME (2006) Adaptive responses of vertebrate neurons to anoxia–matching supply to demand. Respir Physiol Neurobiol 154:226–240PubMedCrossRefGoogle Scholar
  20. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60:1471–1477PubMedCrossRefGoogle Scholar
  21. Chang AY, Wang CH, Chiu TH, Chi JW, Chen CF, Ho LT, Lin AMY (2005) Hypoxic preconditioning attenuated in kainic acid-induced neurotoxicity in rat hippocampus. Exp Neurol 195:40–48PubMedCrossRefGoogle Scholar
  22. Chang K-C, Yang J-J, Liao J-F, Wang C-H, Chiu T-H, Hsu F-C (2006) Chronic hypobaric hypoxia induces tolerance to acute hypoxia and up-regulation in alpha-2 adrenoceptor in rat locus coeruleus. Brain Res 1106:82–90PubMedCrossRefGoogle Scholar
  23. Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931PubMedGoogle Scholar
  24. Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26:9471–9481PubMedCrossRefGoogle Scholar
  25. Chen Z-Y, Wang L, Asavaritkrai P, Noguchi CT (2010) Up-regulation of erythropoietin receptor by nitric oxide mediates hypoxia preconditioning. J Neurosci Res 88:3180–3188PubMedCrossRefGoogle Scholar
  26. Chu K, Jung K-H, Kim S-J, Lee S-T, Kim J, Park H-K, Song E-C, Kim SU, Kim M, Lee SK, Roh J-K (2008) Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1alpha stabilization in the host brain. Brain Res 1207:182–192PubMedCrossRefGoogle Scholar
  27. Chu PWY, Beart PM, Jones NM (2010) Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. Eur J Pharmacol 633:24–32PubMedCrossRefGoogle Scholar
  28. Churilova AV, Rybnikova EA, Glushchenko TS, Tyulkova EI, Samoilov MO (2010) Effects of moderate hypobaric hypoxic preconditioning on the expression of the transcription factors pCREB and NF-kappaB in the rat hippocampus before and after severe hypoxia. Neurosci Behav Physiol 40:852–857PubMedCrossRefGoogle Scholar
  29. Correia SC, Carvalho C, Cardoso S, Santos RX, Santos MS, Oliveira CR, Perry G, Zhu X, Smith MA, Moreira PI (2010) Mitochondrial preconditioning: a potential neuroprotective strategy. Front Aging Neurosci 2:138PubMedGoogle Scholar
  30. Coulet F, Nadaud S, Agrapart M, Soubrier F (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278:46230–46240PubMedCrossRefGoogle Scholar
  31. Dale-Nagle EA, Hoffman MS, MacFarlane PM, Satriotomo I, Lovett-Barr MR, Vinit S, Mitchell GS (2010) Spinal plasticity following intermittent hypoxia: implications for spinal injury. Ann N Y Acad Sci 1198:252–259PubMedCrossRefGoogle Scholar
  32. Dasgupta N, Patel AM, Scott BA, Crowder CM (2007) Hypoxic preconditioning requires the apoptosis protein CED-4 in C. elegans. Curr Biol 17:1954–1959PubMedCrossRefGoogle Scholar
  33. Dhodda VK, Sailor KA, Bowen KK, Vemuganti R (2004) Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89:73–89PubMedCrossRefGoogle Scholar
  34. Dirnagl U, Meisel A (2008) Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 55:334–344PubMedCrossRefGoogle Scholar
  35. Duan CL, Yan FS, Song XY, Lu GW (1999) Changes of superoxide dismutase, glutathione peroxidase and lipid peroxides in the brain of mice preconditioned by hypoxia. Biol Signals Recept 8:256–260PubMedCrossRefGoogle Scholar
  36. Duszczyk M, Ziembowicz A, Gadamski R, Wieronska JM, Smialowska M, Lazarewicz JW (2009) Changes in the NPY immunoreactivity in gerbil hippocampus after hypoxic and ischemic preconditioning. Neuropeptides 43:31–39PubMedCrossRefGoogle Scholar
  37. Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, Flamme I (2003) Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278:7520–7530PubMedCrossRefGoogle Scholar
  38. Faeh D, Gutzwiller F, Bopp M (2009) Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation 120:495–501PubMedCrossRefGoogle Scholar
  39. Fan Y-y, Hu W-w, Dai H-b, Zhang J-x, Zhang L-y, He P, Shen Y, Ohtsu H, Wei E-q, Chen Z (2011) Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice. J Cereb Blood Flow Metab 31:305–314PubMedCrossRefGoogle Scholar
  40. Feng Y, Rhodes PG, Bhatt AJ (2010) Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model. Brain Res 1325:1–9PubMedCrossRefGoogle Scholar
  41. Francis KR, Wei L (2010) Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis 1:e22PubMedCrossRefGoogle Scholar
  42. Gage AT, Stanton PK (1996) Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor. Brain Res 719:172–178PubMedCrossRefGoogle Scholar
  43. Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226:79–91PubMedCrossRefGoogle Scholar
  44. Garnier P, Demougeot C, Bertrand N, Prigent-Tessier A, Marie C, Beley A (2001) Stress response to hypoxia in gerbil brain: HO-1 and Mn SOD expression and glial activation. Brain Res 893:301–309PubMedCrossRefGoogle Scholar
  45. Geocadin RG, Malhotra AD, Tong S, Seth A, Moriwaki G, Hanley DF, Thakor NV (2005) Effect of acute hypoxic preconditioning on qEEG and functional recovery after cardiac arrest in rats. Brain Res 1064:146–154PubMedCrossRefGoogle Scholar
  46. Gidday JM, Fitzgibbons JC, Shah AR, Park TS (1994) Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 168:221–224PubMedCrossRefGoogle Scholar
  47. Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM, Park TS (1999) Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19:331–340PubMedCrossRefGoogle Scholar
  48. Gorgias N, Maidatsi P, Tsolaki M, Alvanou A, Kiriazis G, Kaidoglou K, Giala M (1996) Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia. Brain Res 714:215–225PubMedCrossRefGoogle Scholar
  49. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724PubMedCrossRefGoogle Scholar
  50. Gustavsson M, Anderson MF, Mallard C, Hagberg H (2005) Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res 57:305–309PubMedCrossRefGoogle Scholar
  51. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA (2008) Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 28:2015–2024PubMedCrossRefGoogle Scholar
  52. Hamrick SEG, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM (2005) A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci Lett 379:96–9100PubMedCrossRefGoogle Scholar
  53. Hashiguchi A, Yano S, Morioka M, Hamada J, Ushio Y, Takeuchi Y, Fukunaga K (2004) Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab 24:271–279PubMedCrossRefGoogle Scholar
  54. He W, Qian Zhong M, Zhu L, Christopher Q, Du F, Yung WH, Ke Y (2008) Ginkgolides mimic the effects of hypoxic preconditioning to protect C6 cells against ischemic injury by up-regulation of hypoxia-inducible factor-1 alpha and erythropoietin. Int J Biochem Cell Biol 40:651–662PubMedCrossRefGoogle Scholar
  55. Hu C-J, Wang L-Y, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374PubMedCrossRefGoogle Scholar
  56. Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang J-A, Yu SP (2011) Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol 301:362–372CrossRefGoogle Scholar
  57. Jaderstad J, Brismar H, Herlenius E (2010) Hypoxic preconditioning increases gap-junctional graft and host communication. Neuroreport 21:1126–1132PubMedCrossRefGoogle Scholar
  58. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369PubMedGoogle Scholar
  59. Jones NM, Bergeron M (2001) Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 21:1105–1114PubMedCrossRefGoogle Scholar
  60. Kalpana S, Dhananjay S, Anju B, Lilly G, Sai Ram M (2008) Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: molecular mechanisms of action of cobalt chloride. Toxicol Appl Pharmacol 231:354–363PubMedCrossRefGoogle Scholar
  61. Kenneth NS, Rocha S (2008) Regulation of gene expression by hypoxia. Biochem J 414:19–29PubMedCrossRefGoogle Scholar
  62. Laudenbach V, Fontaine RH, Medja F, Carmeliet P, Hicklin DJ, Gallego J, Leroux P, Marret S, Gressens P (2007) Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol Dis 26:243–252PubMedCrossRefGoogle Scholar
  63. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 40:3349–3355PubMedCrossRefGoogle Scholar
  64. Levin SG, Godukhin OV (2009) Comparative roles of ATP-sensitive K+ channels and Ca2+ -activated BK+ channels in posthypoxic hyperexcitability and rapid hypoxic preconditioning in hippocampal CA1 pyramidal neurons in vitro. Neurosci Lett 461:90–94PubMedCrossRefGoogle Scholar
  65. Levin SG, Shamsutdinova AA, Godukhin OV (2010) Apamin, a selective blocker of SK(Ca) channels, inhibits posthypoxic hyperexcitability but does not affect rapid hypoxic preconditioning in hippocampal CA1 pyramidal neurons in vitro. Neurosci Lett 484:35–38PubMedCrossRefGoogle Scholar
  66. Li J, McCullough LD (2010) Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab 30:480–492PubMedCrossRefGoogle Scholar
  67. Li L, Qu Y, Mao M, Xiong Y, Mu D (2008a) The involvement of phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1alpha in the developing rat brain after hypoxia-ischemia. Brain Res 1197:152–158PubMedCrossRefGoogle Scholar
  68. Li Y-X, Ding S-J, Xiao L, Guo W, Zhan Q (2008b) Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin. Neurosci Bull 24:89–95PubMedCrossRefGoogle Scholar
  69. Lin AMY, Chen CF, Ho LT (2002) Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain. Exp Neurol 176:328–335PubMedCrossRefGoogle Scholar
  70. Lin AMY, Dung S-W, Chen C-F, Chen W-H, Ho L-T (2003) Hypoxic preconditioning prevents cortical infarction by transient focal ischemia-reperfusion. Ann N Y Acad Sci 993:168–178PubMedCrossRefGoogle Scholar
  71. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949PubMedCrossRefGoogle Scholar
  72. Lin JHC, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695PubMedCrossRefGoogle Scholar
  73. Liu J, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144–C153PubMedGoogle Scholar
  74. Liu L, Wise DR, Diehl JA, Simon MC (2008) Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283:31153–31162PubMedCrossRefGoogle Scholar
  75. Lu GW, Ding DW, Shi MT (1999) Acute adaptation of mice to hypoxic hypoxia. Biol Signals Recept 8:247–255PubMedCrossRefGoogle Scholar
  76. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309PubMedCrossRefGoogle Scholar
  77. Mao XR, Crowder CM (2010) Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol Cell Biol 30:5033–5042PubMedCrossRefGoogle Scholar
  78. Marsh B, Stevens SL, Packard AEB, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29:9839–9849PubMedCrossRefGoogle Scholar
  79. Martinez-Romero R, Canuelo A, Martinez-Lara E, Javier Oliver F, Cardenas S, Siles E (2009) Poly(ADP-ribose) polymerase-1 modulation of in vivo response of brain hypoxia-inducible factor-1 to hypoxia/reoxygenation is mediated by nitric oxide and factor inhibiting HIF. J Neurochem 111:150–159PubMedCrossRefGoogle Scholar
  80. Meloni BP, Majda BT, Knuckey NW (2002) Evaluation of preconditioning treatments to protect near-pure cortical neuronal cultures from in vitro ischemia induced acute and delayed neuronal death. Brain Res 928:69–75PubMedCrossRefGoogle Scholar
  81. Miller BA, Perez RS, Shah AR, Gonzales ER, Park TS, Gidday JM (2001) Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion. Neuroreport 12:1663–1669PubMedCrossRefGoogle Scholar
  82. Nalivaeva NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, Dobrota D, Turner AJ (2004) Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci 1035:21–33CrossRefGoogle Scholar
  83. Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, Yoon DH, Lee M, Kim KN (2010) Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett 472:215–219PubMedCrossRefGoogle Scholar
  84. Omata N, Murata T, Takamatsu S, Maruoka N, Wada Y, Yonekura Y, Fujibayashi Y (2002) Hypoxic tolerance induction in rat brain slices following hypoxic preconditioning due to expression of neuroprotective proteins as revealed by dynamic changes in glucose metabolism. Neurosci Lett 329:205–208PubMedCrossRefGoogle Scholar
  85. Peng P-H, Huang H-S, Lee Y-J, Chen Y-S, Ma M-C (2009) Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 108:741–754PubMedCrossRefGoogle Scholar
  86. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–525PubMedCrossRefGoogle Scholar
  87. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986PubMedCrossRefGoogle Scholar
  88. Ralph GS, Parham S, Lee SR, Beard GL, Craigon MH, Ward N, White JR, Barber RD, Rayner W, Kingsman SM, Mundy CR, Mazarakis ND, Krige D (2004) Identification of potential stroke targets by lentiviral vector mediated overexpression of HIF-1 alpha and HIF-2 alpha in a primary neuronal model of hypoxia. J Cereb Blood Flow Metab 24:245–258PubMedCrossRefGoogle Scholar
  89. Ran R, Xu H, Lu A, Bernaudin M, Sharp FR (2005) Hypoxia preconditioning in the brain. Dev Neurosci 27:87–92PubMedCrossRefGoogle Scholar
  90. Ratan RR, Siddiq A, Aminova L, Lange PS, Langley B, Ayoub I, Gensert J, Chavez J (2004) Translation of ischemic preconditioning to the patient: prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35:2687–2689PubMedCrossRefGoogle Scholar
  91. Rauca C, Zerbe R, Jantze H, Krug M (2000) The importance of free hydroxyl radicals to hypoxia preconditioning. Brain Res 868:147–149PubMedCrossRefGoogle Scholar
  92. Rubaj A, Gustaw K, Zgodzinski W, Kleinrok Z, Sieklucka-Dziuba M (2000) The role of opioid receptors in hypoxic preconditioning against seizures in brain. Pharmacol Biochem Behav 67:65–70PubMedCrossRefGoogle Scholar
  93. Ruscher K, Isaev N, Trendelenburg G, Weih M, Iurato L, Meisel A, Dirnagl U (1998) Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 254:117–120PubMedCrossRefGoogle Scholar
  94. Rybnikova E, Tulkova E, Pelto-Huikko M, Samoilov M (2002) Mild preconditioning hypoxia modifies nerve growth factor-induced gene A messenger RNA expression in the rat brain induced by severe hypoxia. Neurosci Lett 329:49–52PubMedCrossRefGoogle Scholar
  95. Rybnikova E, Vataeva L, Tyulkova E, Gluschenko T, Otellin V, Pelto-Huikko M, Samoilov MO (2005) Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia. Behav Brain Res 160:107–114PubMedCrossRefGoogle Scholar
  96. Rybnikova E, Sitnik N, Gluschenko T, Tjulkova E, Samoilov MO (2006) The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 1089:195–202PubMedCrossRefGoogle Scholar
  97. Rybnikova E, Gluschenko T, Tulkova E, Churilova A, Jaroshevich O, Baranova K, Samoilov M (2008) Preconditioning induces prolonged expression of transcription factors pCREB and NF-kappa B in the neocortex of rats before and following severe hypobaric hypoxia. J Neurochem 106:1450–1458PubMedGoogle Scholar
  98. Rybnikova E, Glushchenko T, Tyulkova E, Baranova K, Samoilov M (2009) Mild hypobaric hypoxia preconditioning up-regulates expression of transcription factors c-Fos and NGFI-A in rat neocortex and hippocampus. Neurosci Res 65:360–366PubMedCrossRefGoogle Scholar
  99. Rybnikova E, Glushchenko T, Churilova A, Pivina S, Samoilov M (2011) Expression of glucocorticoid and mineralocorticoid receptors in hippocampus of rats exposed to various modes of hypobaric hypoxia: putative role in hypoxic preconditioning. Brain Res 1381:66–77PubMedCrossRefGoogle Scholar
  100. Samoilov MO, Lazarevich EV, Semenov DG, Mokrushin AA, Tyul’kova EI, Romanovskii DY, Milyakova EA, Dudkin KN (2003) The adaptive effects of hypoxic preconditioning of brain neurons. Neurosci Behav Physiol 33:1–11PubMedCrossRefGoogle Scholar
  101. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011PubMedCrossRefGoogle Scholar
  102. Schurr A, Reid KH, Tseng MT, West C, Rigor BM (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374:244–248PubMedCrossRefGoogle Scholar
  103. Semenov DG, Samoilov MO, Lazarewicz JW (2008) Preconditioning reduces hypoxia-evoked alterations in glutamatergic Ca2+ signaling in rat cortex. Acta Neurobiol Exp (Wars) 68:169–179Google Scholar
  104. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9PubMedGoogle Scholar
  105. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106CrossRefGoogle Scholar
  106. Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE (2002) Responding to hypoxia: lessons from a model cell line. Sci STKE 2002:re11PubMedCrossRefGoogle Scholar
  107. Shao G, Gong K-R, Li J, Xu X-J, Gao C-Y, Zeng X-Z, Lu G-W, Huo X (2009) Antihypoxic effects of neuroglobin in hypoxia-preconditioned mice and SH-SY5Y cells. Neurosignals 17:196–202PubMedCrossRefGoogle Scholar
  108. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437–448PubMedCrossRefGoogle Scholar
  109. Shu Y, Patel SM, Pac-Soo C, Fidalgo AR, Wan Y, Maze M, Ma D (2010) Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology 113:360–368PubMedCrossRefGoogle Scholar
  110. Siddiq A, Aminova LR, Troy CM, Suh K, Messer Z, Semenza GL, Ratan RR (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 29:8828–8838PubMedCrossRefGoogle Scholar
  111. Sommer C (2008) Ischemic preconditioning: postischemic structural changes in the brain. J Neuropathol Exp Neurol 67:85–92PubMedCrossRefGoogle Scholar
  112. Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL (2003) Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res 63:6130–6134PubMedGoogle Scholar
  113. Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong Z-g, Saugstad J, Simon RP, Geromanos S, Langridge J, Lan J-q, Zhou A (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3:ra15PubMedCrossRefGoogle Scholar
  114. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037PubMedCrossRefGoogle Scholar
  115. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, Stenzel-Poore MP (2011) Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 31:8456–8463PubMedCrossRefGoogle Scholar
  116. Stowe AM, Altay T, Freie AB, Gidday JM (2011) Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol 69:975–985PubMedCrossRefGoogle Scholar
  117. Stowe AM, Wacker BK, Perfater JL, Freie AB, Gidday JM (2012) CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 9:33PubMedCrossRefGoogle Scholar
  118. Stroev SA, Gluschenko TS, Tjulkova EI, Spyrou G, Rybnikova EA, Samoilov MO, Pelto-Huikko M (2004a) Preconditioning enhances the expression of mitochondrial antioxidant thioredoxin-2 in the forebrain of rats exposed to severe hypobaric hypoxia. J Neurosci Res 78:563–569PubMedCrossRefGoogle Scholar
  119. Stroev SA, Tjulkova EI, Gluschenko TS, Rybnikova EA, Samoilov MO, Pelto-Huikko M (2004b) The augmentation of brain thioredoxin-1 expression after severe hypobaric hypoxia by the preconditioning in rats. Neurosci Lett 370:224–229PubMedCrossRefGoogle Scholar
  120. Stroev SA, Gluschenko TS, Tjulkova EI, Rybnikova EA, Samoilov MO, Pelto-Huikko M (2005) The effect of preconditioning on the Cu, Zn superoxide dismutase expression and enzyme activity in rat brain at the early period after severe hypobaric hypoxia. Neurosci Res 53:39–47PubMedCrossRefGoogle Scholar
  121. Stroev SA, Tyul’kova EI, Glushchenko TS, Tugoi IA, Samoilov MO, Pelto-Huikko M (2009) Thioredoxin-1 expression levels in rat hippocampal neurons in moderate hypobaric hypoxia. Neurosci Behav Physiol 39:1–5PubMedCrossRefGoogle Scholar
  122. Taie S, Ono J, Iwanaga Y, Tomita S, Asaga T, Chujo K, Ueki M (2009) Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning. J Clin Neurosci 16:1056–1060PubMedCrossRefGoogle Scholar
  123. Takahashi R, Kobayashi C, Kondo Y, Nakatani Y, Kudo I, Kunimoto M, Imura N, Hara S (2004) Subcellular localization and regulation of hypoxia-inducible factor-2alpha in vascular endothelial cells. Biochem Biophys Res Commun 317:84–91PubMedCrossRefGoogle Scholar
  124. Tang Y, Pacary E, Freret T, Divoux D, Petit E, Schumann-Bard P, Bernaudin M (2006) Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol Dis 21:18–28PubMedCrossRefGoogle Scholar
  125. Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210:656–670PubMedCrossRefGoogle Scholar
  126. Thiersch M, Lange C, Joly S, Heynen S, Le YZ, Samardzija M, Grimm C (2009) Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors. Eur J Neurosci 29:2291–2302PubMedCrossRefGoogle Scholar
  127. Tixier E, Leconte C, Touzani O, Roussel S, Petit E, Bernaudin M (2008) Adrenomedullin protects neurons against oxygen glucose deprivation stress in an autocrine and paracrine manner. J Neurochem 106:1388–1403PubMedCrossRefGoogle Scholar
  128. Trachootham D, Lu W, Ogasawara MA, Nilsa R-DV, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374PubMedCrossRefGoogle Scholar
  129. Turovskaya MV, Turovsky EA, Zinchenko VP, Levin SG, Shamsutdinova AA, Godukhin OV (2011) Repeated brief episodes of hypoxia modulate the calcium responses of ionotropic glutamate receptors in hippocampal neurons. Neurosci Lett 496:11–14PubMedCrossRefGoogle Scholar
  130. Tzeng YW, Lee LY, Chao PL, Lee HC, Wu RT, Lin AMY (2010) Role of autophagy in protection afforded by hypoxic preconditioning against MPP+ -induced neurotoxicity in SH-SY5Y cells. Free Radic Biol Med 49:839–846PubMedCrossRefGoogle Scholar
  131. Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Di Renzo G, Annunziato L (2011) NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42:754–763PubMedCrossRefGoogle Scholar
  132. van der Kooij MA, Groenendaal F, Kavelaars A, Heijnen CJ, van Bel F (2008) Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev 59:22–33PubMedCrossRefGoogle Scholar
  133. Vannucci RC, Towfighi J, Vannucci SJ (1998) Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 71:1215–1220PubMedCrossRefGoogle Scholar
  134. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou M-L, Gidday JM, Han BH, Zipfel GJ (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42:776–782PubMedCrossRefGoogle Scholar
  135. Wacker BK, Park TS, Gidday JM (2009) Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 40:3342–3348PubMedCrossRefGoogle Scholar
  136. Wacker BK, Freie AB, Perfater JL, Gidday JM (2012) Junctional protein regulation by sphingosine kinase 2 contributes to blood-brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. J Cereb Blood Flow Metab 32(6):1014–1023Google Scholar
  137. Wang X, Deng J, Boyle DW, Zhong J, Lee WH (2004) Potential role of IGF-I in hypoxia tolerance using a rat hypoxic-ischemic model: activation of hypoxia-inducible factor 1alpha. Pediatr Res 55:385–394PubMedCrossRefGoogle Scholar
  138. Wang G, Zhou D, Wang C, Gao Y, Zhou Q, Qian G, DeCoster MA (2010) Hypoxic preconditioning suppresses group III secreted phospholipase A2-induced apoptosis via JAK2-STAT3 activation in cortical neurons. J Neurochem 114:1039–1048PubMedGoogle Scholar
  139. Wei IH, Huang C-C, Tseng C-Y, Chang H-M, Tu H-C, Tsai M-H, Wen C-Y, Shieh J-Y (2008) Mild hypoxic preconditioning attenuates injury-induced NADPH-d/nNOS expression in brainstem motor neurons of adult rats. J Chem Neuroanat 35:123–132PubMedCrossRefGoogle Scholar
  140. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162PubMedCrossRefGoogle Scholar
  141. Westberg JA, Serlachius M, Lankila P, Penkowa M, Hidalgo J, Andersson LC (2007) Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38:1025–1030PubMedCrossRefGoogle Scholar
  142. Whitlock NA, Agarwal N, Ma JX, Crosson CE (2005) Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats. Invest Ophthalmol Vis Sci 46:1092–1098PubMedCrossRefGoogle Scholar
  143. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22:6401–6407PubMedGoogle Scholar
  144. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17:271–273PubMedGoogle Scholar
  145. Woitzik J, Hecht N, Schneider UC, Pena-Tapia PG, Vajkoczy P (2006) Increased vessel diameter of leptomeningeal anastomoses after hypoxic preconditioning. Brain Res 1115:209–212PubMedCrossRefGoogle Scholar
  146. Wu L-Y, Ding A-S, Zhao T, Ma Z-M, Wang F-Z, Fan M (2004) Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res 999:149–154PubMedCrossRefGoogle Scholar
  147. Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M (2005) Underlying mechanism of hypoxic preconditioning decreasing apoptosis induced by anoxia in cultured hippocampal neurons. Neurosignals 14:109–116PubMedCrossRefGoogle Scholar
  148. Wu L-Y, Ma Z-M, Fan X-L, Zhao T, Liu Z-H, Huang X, Li M-M, Xiong L, Zhang K, Zhu L-L, Fan M (2010a) The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells. Cell Stress Chaperones 15:387–394PubMedCrossRefGoogle Scholar
  149. Wu W, Guo X, Jiang D, Sun J, Qiu Y, Zhu Y, Thakor NV, Tong S (2010b) Influence of hypoxic-preconditioning on autonomic regulation following global ischemic brain injury in rats. Neurosci Lett 480:191–195PubMedCrossRefGoogle Scholar
  150. Xie J, Lu GW, Hou YZ (1999) Role of excitatory amino acids in hypoxic preconditioning. Biol Signals Recept 8:267–274PubMedCrossRefGoogle Scholar
  151. Xu H, Lu A, Sharp FR (2011) Regional genome transcriptional response of adult mouse brain to hypoxia. BMC Genomics 12:499PubMedCrossRefGoogle Scholar
  152. Yao S-y, Soutto M, Sriram S (2008) Preconditioning with cobalt chloride or desferrioxamine protects oligodendrocyte cell line (MO3.13) from tumor necrosis factor-alpha-mediated cell death. J Neurosci Res 86:2403–2413PubMedCrossRefGoogle Scholar
  153. Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ, Hickey RW, Chen J (2007) Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 38:1017–1024PubMedCrossRefGoogle Scholar
  154. Yu S, Zhao T, Guo M, Fang H, Ma J, Ding A, Wang F, Chan P, Fan M (2008) Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res 1211:22–29PubMedCrossRefGoogle Scholar
  155. Zhan R-Z, Fujihara H, Baba H, Yamakura T, Shimoji K (2002) Ischemic preconditioning is capable of inducing mitochondrial tolerance in the rat brain. Anesthesiology 97:896–901PubMedCrossRefGoogle Scholar
  156. Zhan L, Wang T, Li W, Xu ZC, Sun W, Xu E (2010) Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre-conditioning in adult rats. J Neurochem 114:897–908PubMedCrossRefGoogle Scholar
  157. Zhan L, Peng W, Sun W, Xu E (2011) Hypoxic preconditioning induces neuroprotection against transient global ischemia in adult rats via preserving the activity of Na(+)/K(+)-ATPase. Neurochem Int 59:65–72PubMedCrossRefGoogle Scholar
  158. Zhang WL, Lu GW (1999) Changes of adenosine and its A<sub>1</sub> receptor in hypoxic preconditioning. Biol Signals Recept 8:275–280PubMedCrossRefGoogle Scholar
  159. Zhang J, Qian H, Zhao P, Hong SS, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke 37:1094–1099PubMedCrossRefGoogle Scholar
  160. Zhang N, Gao G, Bu X, Han S, Fang L, Li J (2007a) Neuron-specific phosphorylation of c-Jun N-terminal kinase increased in the brain of hypoxic preconditioned mice. Neurosci Lett 423:219–224PubMedCrossRefGoogle Scholar
  161. Zhang Y, Park TS, Gidday JM (2007b) Hypoxic preconditioning protects human brain endothelium from ischemic apoptosis by Akt-dependent survivin activation. Am J Physiol Heart Circ Physiol 292:H2573–H2581PubMedCrossRefGoogle Scholar
  162. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J (2011) Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism. Neurochem Int 58:684–692PubMedCrossRefGoogle Scholar
  163. Zhu Y, Ohlemiller KK, McMahan BK, Gidday JM (2002) Mouse models of retinal ischemic tolerance. Invest Ophthalmol Vis Sci 43:1903–1911PubMedGoogle Scholar
  164. Zhu Y, Ohlemiller KK, McMahan BK, Park TS, Gidday JM (2006) Constitutive nitric oxide synthase activity is required to trigger ischemic tolerance in mouse retina. Exp Eye Res 82:153–163PubMedCrossRefGoogle Scholar
  165. Zhu Y, Zhang Y, Ojwang BA, Brantley MA Jr, Gidday JM (2007) Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci 48:1735–1743PubMedCrossRefGoogle Scholar
  166. Zhu Y, Zhang L, Gidday JM (2008) Deferroxamine preconditioning promotes long-lasting retinal ischemic tolerance. J Ocul Pharmacol Ther 24:527–535PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurosurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations