Medical Gases for Conditioning: Volatile Anesthetics, Hyperbaric Oxygen, and Hydrogen Sulfide

  • Zhiyi ZuoEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Preconditioning-induced neuroprotection is a well-known phenomenon. Multiple stimuli can induce a preconditioning effect in the central nervous system. Among them are medical gases including volatile anesthetics and hyperbaric oxygen. These gases are routinely used in clinical practice and are relatively safe. Robust neuroprotection has been shown in various brain ischemia models when these gases are used as preconditioning stimuli. Most of these studies were performed in rodents. A few studies used rabbits. The effective time window includes two phases. The acute phase that starts a few minutes after the exposure to the medical gases and can last for a few hours. The delayed phase begins a few hours after the preconditioning stimulation and sustains for a few days. Mechanistic studies have been focused on identifying the intracellular signaling molecules and the effectors. Although neuroprotective effects have been convincingly shown in animals, it is still not known whether preconditioning induced by medical gases can improve neurological outcome after brain or spinal cord ischemia in humans. With the accumulation of knowledge on this neuroprotection in animals, it is tempting to think that clinical trials to test the neuroprotective effects induced by preconditioning with medical gases in humans may be performed soon, especially when clinical situations where this type of protection can be applied occur frequently in clinical practice. Such examples include carotid and cardiac surgeries that frequently can induce ischemic events in the central nervous system.


KATP Channel Volatile Anesthetic Minimum Alveolar Concentration Spinal Cord Ischemia Global Brain Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamczyk S, Robin E, Simerabet M, Kipnis E, Tavernier B, Vallet B et al (2010) Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth 104:191–200PubMedCrossRefGoogle Scholar
  2. Allain R, Marone LK, Meltzer J, Jeyabalan G (2005) Carotid endarterectomy. Int Anesthesiol Clin 43:15–38PubMedCrossRefGoogle Scholar
  3. Arrowsmith JE, Grocott HP, Reves JG, Newman MF (2000) Central nervous system complications of cardiac surgery. Br J Anaesth 84:378–393PubMedCrossRefGoogle Scholar
  4. Bantel C, Maze M, Trapp S (2009) Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 110:986–995PubMedCrossRefGoogle Scholar
  5. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X et al (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1950; discussion 1950–1PubMedCrossRefGoogle Scholar
  6. Belhomme D, Peynet J, Louzy M, Launay J-M, Kitakaze M, Menasche P (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100(Suppl II):II340–II344PubMedGoogle Scholar
  7. Bickler PE, Zhan X, Fahlman CS (2005) Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 103:532–539PubMedCrossRefGoogle Scholar
  8. Biermann J, Lagreze WA, Schallner N, Schwer CI, Goebel U (2011) Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury. Mol Vis 17:1275–1286PubMedGoogle Scholar
  9. Blanck TJ, Haile M, Xu F, Zhang J, Heerdt P, Veselis RA et al (2000) Isoflurane pretreatment ameliorates postischemic neurological dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model. Anesthesiology 93:1285–1293PubMedCrossRefGoogle Scholar
  10. Cheng O, Ostrowski RP, Wu B, Liu W, Chen C, Zhang JH (2011) Cyclooxygenase-2 mediates hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke 42:484–490PubMedCrossRefGoogle Scholar
  11. Chi OZ, Hunter C, Liu X, Weiss HR (2010) The effects of isoflurane pretreatment on cerebral blood flow, capillary permeability, and oxygen consumption in focal cerebral ischemia in rats. Anesth Analg 110:1412–1418PubMedCrossRefGoogle Scholar
  12. Clergue F, Auroy Y, Pequignot F, Jougla E, Lienhart A, Laxenaire MC (1999) French survey of anesthesia in 1996. Anesthesiology 91:1509–1520PubMedCrossRefGoogle Scholar
  13. Codaccioni JL, Velly LJ, Moubarik C, Bruder NJ, Pisano PS, Guillet BA (2009) Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology 110:1271–1278PubMedCrossRefGoogle Scholar
  14. Dacey LJ, Likosky DS, Leavitt BJ, Lahey SJ, Quinn RD, Hernandez F Jr et al (2005) Perioperative stroke and long-term survival after coronary bypass graft surgery. Ann Thorac Surg 79:532–536; discussion 537PubMedCrossRefGoogle Scholar
  15. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105PubMedCrossRefGoogle Scholar
  16. De Hert SG, ten Broecke PW, Mertens E, Wan Sommeren E, De Blier IG, Stockman BA et al (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49PubMedCrossRefGoogle Scholar
  17. Ding Q, Wang Q, Deng J, Gu Q, Hu S, Li Y et al (2009) Sevoflurane preconditioning induces rapid ischemic tolerance against spinal cord ischemia/reperfusion through activation of extracellular signal-regulated kinase in rabbits. Anesth Analg 109:1263–1272PubMedCrossRefGoogle Scholar
  18. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254PubMedCrossRefGoogle Scholar
  19. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T (2002) Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 96:907–912PubMedCrossRefGoogle Scholar
  20. Edmands SD, Hall AC (2009) Role for metallothioneins-I/II in isoflurane preconditioning of primary murine neuronal cultures. Anesthesiology 110:538–547PubMedCrossRefGoogle Scholar
  21. Fan DF, Liu K, Xu WG, Zhang RJ, Liu Y, Kang ZM et al (2010) Hyperbaric oxygen preconditioning reduces the incidence of decompression sickness in rats via nitric oxide. Undersea Hyperb Med 37:173–180PubMedGoogle Scholar
  22. Ferguson GG, Eliasziw M, Barr HW, Clagett GP, Barnes RW, Wallace MC et al (1999) The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. Stroke 30:1751–1758PubMedCrossRefGoogle Scholar
  23. Freiberger JJ, Suliman HB, Sheng H, McAdoo J, Piantadosi CA, Warner DS (2006) A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res 1075:213–222PubMedCrossRefGoogle Scholar
  24. Gao-Yu C, Cong-Yina D, Li-Jun Z, Fei L, Hua F (2011) Effects of hyperbaric oxygen preconditioning on energy metabolism and glutamate level in the peri-infarct area following permanent MCAO. Undersea Hyperb Med 38:91–99PubMedGoogle Scholar
  25. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448PubMedCrossRefGoogle Scholar
  26. Gigante PR, Appelboom G, Hwang BY, Haque RM, Yeh ML, Ducruet AF et al (2011) Isoflurane preconditioning affords functional neuroprotection in a murine model of intracerebral hemorrhage. Acta Neurochir Suppl 111:141–144PubMedCrossRefGoogle Scholar
  27. Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG et al (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol 104:1185–1191PubMedCrossRefGoogle Scholar
  28. Gwak MS, Cao L, Li L, Zuo Z (2011) Isoflurane preconditioning reduces oxygen-glucose deprivation-induced neuronal injury via B-cell lymphoma 2 protein. Environ Toxicol Pharmacol 31:262–265PubMedCrossRefGoogle Scholar
  29. Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa Y, Shibasaki F et al (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130:214–222PubMedCrossRefGoogle Scholar
  30. Hogue CW Jr, Murphy SF, Schechtman KB, Davila-Roman VG (1999) Risk factors for early or delayed stroke after cardiac surgery. Circulation 100:642–647PubMedCrossRefGoogle Scholar
  31. Hu SL, Hu R, Li F, Liu Z, Xia YZ, Cui GY et al (2008) Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude. Acta Neurochir Suppl 105:191–196PubMedCrossRefGoogle Scholar
  32. Hu S, Li F, Luo H, Xia Y, Zhang J, Hu R et al (2010) Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning. Neurol Res 32:173–178PubMedCrossRefGoogle Scholar
  33. Jadhav V, Ostrowski RP, Tong W, Matus B, Jesunathadas R, Zhang JH (2009) Cyclo-oxygenase-2 mediates hyperbaric oxygen preconditioning-induced neuroprotection in the mouse model of surgical brain injury. Stroke 40:3139–3142PubMedCrossRefGoogle Scholar
  34. Jadhav V, Ostrowski RP, Tong W, Matus B, Chang C, Zhang JH (2010) Hyperbaric oxygen preconditioning reduces postoperative brain edema and improves neurological outcomes after surgical brain injury. Acta Neurochir Suppl 106:217–220PubMedCrossRefGoogle Scholar
  35. Julier K, da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A et al (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327PubMedCrossRefGoogle Scholar
  36. Kaneko T, Yokoyama K, Makita K (2005) Late preconditioning with isoflurane in cultured rat cortical neurones. Br J Anaesth 95:662–668PubMedCrossRefGoogle Scholar
  37. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke K, Isaev NK et al (2002a) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898PubMedCrossRefGoogle Scholar
  38. Kapinya KJ, Prass K, Dirnagl U (2002b) Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? Neuroreport 13:1431–1435PubMedCrossRefGoogle Scholar
  39. Kehl F, Payne RS, Roewer N, Schurr A (2004) Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res 1021:76–81PubMedCrossRefGoogle Scholar
  40. Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803PubMedCrossRefGoogle Scholar
  41. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007a) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27:1108–1128PubMedCrossRefGoogle Scholar
  42. Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ (2007b) Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab 27:1377–1386PubMedCrossRefGoogle Scholar
  43. Li L, Zuo Z (2009) Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience 164:497–506PubMedCrossRefGoogle Scholar
  44. Li J, Zheng S, Zuo Z (2002) Isoflurane decreases AMPA-induced dark cell degeneration and edematous damage of Purkinje neurons in the rat cerebellar slices. Brain Res 958:399–404PubMedCrossRefGoogle Scholar
  45. Li Q, Li J, Zhang L, Wang B, Xiong L (2007) Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci 80:1087–1093PubMedCrossRefGoogle Scholar
  46. Li QF, Zhu YS, Jiang H (2008a) Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 1245:26–35PubMedCrossRefGoogle Scholar
  47. Li L, Peng L, Zuo Z (2008b) Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586:106–113PubMedCrossRefGoogle Scholar
  48. Li Z, Liu W, Kang Z, Lv S, Han C, Yun L et al (2008c) Mechanism of hyperbaric oxygen preconditioning in neonatal hypoxia-ischemia rat model. Brain Res 1196:151–156PubMedCrossRefGoogle Scholar
  49. Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH et al (2008d) Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res 1210:223–229PubMedCrossRefGoogle Scholar
  50. Limatola V, Ward P, Cattano D, Gu J, Giunta F, Maze M et al (2010) Xenon preconditioning confers neuroprotection regardless of gender in a mouse model of transient middle cerebral artery occlusion. Neuroscience 165:874–881PubMedCrossRefGoogle Scholar
  51. Liu Y, Xiong L, Chen S, Wang Q (2006) Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Can J Anaesth 53:194–201PubMedCrossRefGoogle Scholar
  52. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24PubMedGoogle Scholar
  53. Luo Y, Ma D, Ieong E, Sanders RD, Yu B, Hossain M et al (2008) Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. Anesthesiology 109:782–789PubMedCrossRefGoogle Scholar
  54. Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S et al (2006) Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 26:199–208PubMedCrossRefGoogle Scholar
  55. McAuliffe JJ, Joseph B, Vorhees CV (2007) Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia. Anesth Analg 104:1066–1077PubMedCrossRefGoogle Scholar
  56. McMurtrey RJ, Zuo Z (2010) Isoflurane preconditioning and postconditioning in rat hippocampal neurons. Brain Res 1358:184–190PubMedCrossRefGoogle Scholar
  57. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedCrossRefGoogle Scholar
  58. Nasu I, Yokoo N, Takaoka S, Takata K, Hoshikawa T, Okada M et al (2006) The dose-dependent effects of isoflurane on outcome from severe forebrain ischemia in the rat. Anesth Analg 103:413–418, table of contentsPubMedCrossRefGoogle Scholar
  59. Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z (2006) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26:666–674PubMedCrossRefGoogle Scholar
  60. O’Rourke B (2004) Evidence for mitochondrial K+  channels and their role in cardioprotection. Circ Res 94:420–432PubMedCrossRefGoogle Scholar
  61. Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N et al (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29:1–13PubMedCrossRefGoogle Scholar
  62. Ostrowski RP, Jadhav V, Chen W, Zhang JH (2010) Reduced matrix metalloproteinase-9 activity and cell death after global ischemia in the brain preconditioned with hyperbaric oxygen. Acta Neurochir Suppl 106:47–49PubMedCrossRefGoogle Scholar
  63. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS et al (2005) Isoflurane preconditioning protects motor neurons from spinal cord ischemia: its dose-response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett 387:90–94PubMedCrossRefGoogle Scholar
  64. Payne RS, Akca O, Roewer N, Schurr A, Kehl F (2005) Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 1034:147–152PubMedCrossRefGoogle Scholar
  65. Peng Z, Ren P, Kang Z, Du J, Lian Q, Liu Y et al (2008) Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res 1212:71–78PubMedCrossRefGoogle Scholar
  66. Peng Y, Feng SF, Wang Q, Wang HN, Hou WG, Xiong L et al (2010) Hyperbaric oxygen preconditioning ameliorates anxiety-like behavior and cognitive impairments via upregulation of thioredoxin reductases in stressed rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1018–1025PubMedCrossRefGoogle Scholar
  67. Qin Z, Song S, Xi G, Silbergleit R, Keep RF, Hoff JT et al (2007) Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus 22:E13PubMedCrossRefGoogle Scholar
  68. Qin Z, Hua Y, Liu W, Silbergleit R, He Y, Keep RF et al (2008) Hyperbaric oxygen preconditioning activates ribosomal protein S6 kinases and reduces brain swelling after intracerebral hemorrhage. Acta Neurochir Suppl 102:317–320PubMedCrossRefGoogle Scholar
  69. Ren C, Du A, Li D, Sui J, Mayhan WG, Zhao H (2010) Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res 1345:197–205PubMedCrossRefGoogle Scholar
  70. Sang H, Cao L, Qiu P, Xiong L, Wang R, Yan G (2006) Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology 105:953–960PubMedCrossRefGoogle Scholar
  71. Sasaoka N, Kawaguchi M, Kawaraguchi Y, Nakamura M, Konishi N, Patel H et al (2009) Isoflurane exerts a short-term but not a long-term preconditioning effect in neonatal rats exposed to a hypoxic-ischaemic neuronal injury. Acta Anaesthesiol Scand 53:46–54PubMedCrossRefGoogle Scholar
  72. Sigaut S, Jannier V, Rouelle D, Gressens P, Mantz J, Dahmani S (2009) The preconditioning effect of sevoflurane on the oxygen glucose-deprived hippocampal slice: the role of tyrosine kinases and duration of ischemia. Anesth Analg 108:601–608PubMedCrossRefGoogle Scholar
  73. Tay AS, Hu LF, Lu M, Wong PT, Bian JS (2010) Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 167:277–286PubMedCrossRefGoogle Scholar
  74. Velly LJ, Canas PT, Guillet BA, Labrande CN, Masmejean FM, Nieoullon AL et al (2009) Early anesthetic preconditioning in mixed cortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role of adenosine triphosphate dependent potassium channels and reactive oxygen species in sevoflurane-induced neuroprotection. Anesth Analg 108:955–963PubMedCrossRefGoogle Scholar
  75. Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501PubMedCrossRefGoogle Scholar
  76. Wang C, Lee J, Jung H, Zuo Z (2007a) Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia. Brain Res 1152:201–208PubMedCrossRefGoogle Scholar
  77. Wang J, Lei B, Popp S, Meng F, Cottrell JE, Kass IS (2007b) Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience 145:1097–1107PubMedCrossRefGoogle Scholar
  78. Wang L, Kitano H, Hurn PD, Murphy SJ (2008a) Estradiol attenuates neuroprotective benefits of isoflurane preconditioning in ischemic mouse brain. J Cereb Blood Flow Metab 28:1824–1834PubMedCrossRefGoogle Scholar
  79. Wang L, Traystman RJ, Murphy SJ (2008b) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 8:104–110PubMedCrossRefGoogle Scholar
  80. Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H et al (2009) Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats. J Neurotrauma 26:55–66PubMedCrossRefGoogle Scholar
  81. Wang S, Dai ZG, Dong XW, Guo SX, Liu Y, Wang ZP et al (2010) Duplicate preconditioning with sevoflurane in vitro improves neuroprotection in rat brain via activating the extracellular signal-regulated protein kinase. Neurosci Bull 26:437–444PubMedCrossRefGoogle Scholar
  82. Wang H, Lu S, Yu Q, Liang W, Gao H, Li P et al (2011) Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci 3:604–615CrossRefGoogle Scholar
  83. Weber NC, Toma O, Awan S, Frassdorf J, Preckel B, Schlack W (2005) Effects of nitrous oxide on the rat heart in vivo: another inhalational anesthetic that preconditions the heart? Anesthesiology 103:1174–1182PubMedCrossRefGoogle Scholar
  84. Wilson PV, Ammar AD (2005) The incidence of ischemic stroke versus intracerebral hemorrhage after carotid endarterectomy: a review of 2452 cases. Ann Vasc Surg 19:1–4PubMedCrossRefGoogle Scholar
  85. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S (2000) Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J (Engl) 113:836–9Google Scholar
  86. Xiong J, Verkhratsky A, Toescu EC (2002) Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. J Neurosci 22:10761–10771PubMedGoogle Scholar
  87. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X et al (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 96:233–237PubMedGoogle Scholar
  88. Yamashita S, Hirata T, Mizukami Y, Cui YJ, Fukuda S, Ishida K et al (2009) Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase. Brain Res 1301:171–179PubMedCrossRefGoogle Scholar
  89. Yan W (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121PubMedCrossRefGoogle Scholar
  90. Yang Q, Dong H, Deng J, Wang Q, Ye R, Li X et al (2011) Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth Analg 112:931–937PubMedCrossRefGoogle Scholar
  91. Ye Z, Guo Q, Wang N, Xia P, Yuan Y, Wang E (2012) Delayed neuroprotection induced by sevoflurane via opening mitochondrial ATP-sensitive potassium channels and p38 MAPK phosphorylation. Neurol Sci 33(2):239–249PubMedCrossRefGoogle Scholar
  92. Yu Q, Chu M, Wang H, Lu S, Gao H, Li P et al (2011) Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Front Biosci (Elite Ed) 3:978–988Google Scholar
  93. Zhang HP, Yuan LB, Zhao RN, Tong L, Ma R, Dong HL et al (2010) Isoflurane preconditioning induces neuroprotection by attenuating ubiquitin-conjugated protein aggregation in a mouse model of transient global cerebral ischemia. Anesth Analg 111:506–514PubMedCrossRefGoogle Scholar
  94. Zhao P, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in the neonatal rats. Anesthesiology 101:695–702PubMedCrossRefGoogle Scholar
  95. Zhao P, Peng L, Li L, Xu X, Zuo Z (2007) Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology 107:963–970PubMedCrossRefGoogle Scholar
  96. Zheng S, Zuo Z (2003) Isoflurane preconditioning reduces Purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience 118:99–106PubMedCrossRefGoogle Scholar
  97. Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinase. Mol Pharmacol 65:1172–1180PubMedCrossRefGoogle Scholar
  98. Zheng S, Zuo Z (2005) Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. Brain Res 1054:143–151PubMedCrossRefGoogle Scholar
  99. Zhu W, Wang L, Zhang L, Palmateer JM, Libal NL, Hurn PD et al (2010) Isoflurane preconditioning neuroprotection in experimental focal stroke is androgen-dependent in male mice. Neuroscience 169:758–769PubMedCrossRefGoogle Scholar
  100. Zuo Z, Wang Y, Huang Y (2006) Isoflurane preconditioning protects human neuroblastoma SH-SY5Y cells against in vitro simulated ischemia-reperfusion through the activation of extracellular signal-regulated kinases pathway. Eur J Pharmacol 542:84–91PubMedCrossRefGoogle Scholar
  101. Zvara DA, Bryant AJ, Deal DD, DeMarco MP, Campos KM, Mansfield CM et al (2006) Anesthetic preconditioning with sevoflurane does not protect the spinal cord after an ischemic-reperfusion injury in the rat. Anesth Analg 102:1341–1347PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Anesthesiology, Neuroscience, Neurological SurgeryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations