Neuroprotection and Physical Preconditioning: Exercise, Hypothermia, and Hyperthermia

  • Ryan Kochanski
  • David DornbosIII
  • Yuchuan DingEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Exercise, hypothermia, and hyperthermia are preconditioning methods that vastly differ in terms of the physical properties of their respective stimuli. Despite their differences, these varying physical stimuli provide different value in terms of potential clinical utility. This chapter reviews the features and mechanisms underlying the cerebral protection that is conferred through the utilization of exercise, hypothermia, and hyperthermia. The neuroprotection derived from these various treatment modalities underlies their use in clinical settings, and it provides necessary background information for potential therapeutic and pharmaceutical interventions in the future.


Adenosine Receptor KATP Channel Ischemic Precondition Ischemic Insult Oxygen Glucose Deprivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abete P et al (2001) High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J Am Coll Cardiol 38:1357–1365PubMedCrossRefGoogle Scholar
  2. Aibiki M et al (1999) Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans. J Neurotrauma 16:225–232PubMedCrossRefGoogle Scholar
  3. Ang ET et al (2003) Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 118:335–345PubMedCrossRefGoogle Scholar
  4. Arai K, Lee SR, Lo EH (2003) Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Glia 43:254–264PubMedCrossRefGoogle Scholar
  5. Asahi M et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732PubMedGoogle Scholar
  6. Barone FC, Feurstein GZ, White RF (1997) Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosci Biobehav Rev 21:31–44PubMedCrossRefGoogle Scholar
  7. Bequet F et al (2001) Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. Acta Physiol Scand 173:223–230PubMedCrossRefGoogle Scholar
  8. Bergeron M et al (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11:4159–4170PubMedCrossRefGoogle Scholar
  9. Bernaudin M et al (2002) Normobaric Hypoxia Induces Tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403PubMedCrossRefGoogle Scholar
  10. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988PubMedCrossRefGoogle Scholar
  11. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283PubMedCrossRefGoogle Scholar
  12. Busto R et al (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738PubMedCrossRefGoogle Scholar
  13. Cao CX et al (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514PubMedCrossRefGoogle Scholar
  14. Chaudhry K et al (2010) Matrix metalloproteinase-9 (MMP-9) expression and extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation in exercise-reduced neuronal apoptosis after stroke. Neurosci Lett 474:109–114PubMedCrossRefGoogle Scholar
  15. Chen J, Simon R (1997) Ischemic tolerance in the brain. Neurology 48:306–311PubMedCrossRefGoogle Scholar
  16. Chen H, Chopp M, Welch KM (1991) Effect of mild hyperthermia on the ischemic infarct volume after middle cerebral artery occlusion in the rat. Neurology 41:1133–1135PubMedCrossRefGoogle Scholar
  17. Cheng H, Ji X, Ding Y-C, Luo Y, Wang G, Sun X, Chen J, Ling F (2009) Focal perfusion of circulating cooled blood reduces the infarction volume and improves neurological outcome in middle artery occlusion. Neurological Res 31:340–345CrossRefGoogle Scholar
  18. Chi OZ, Liu X, Weiss HR (2001) Effects of mild hypothermia on blood–brain barrier disruption during isoflurane or pentobarbital anesthesia. Anesthesiology 95:933–938PubMedCrossRefGoogle Scholar
  19. Choi JH et al (2010) Selective brain cooling with endovascular intracarotid infusion of cold saline: a pilot feasibility study. ANJR Am J Neuroradiol 31:928–934CrossRefGoogle Scholar
  20. Chopp M et al (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in rat. Neurology 39(1989):1396–1398PubMedCrossRefGoogle Scholar
  21. Clark AW et al (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238:53–56PubMedCrossRefGoogle Scholar
  22. Cohen-Cory S et al (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288PubMedGoogle Scholar
  23. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Physiol Sci 14:125–130Google Scholar
  24. Corbett D, Thornhill J (2000) Temperature modulation (hypothermic and hyperthermic conditions) and its influence on histological and behavioral outcomes following cerebral ischemia. Brain Pathol 10:145–152PubMedCrossRefGoogle Scholar
  25. Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472PubMedCrossRefGoogle Scholar
  26. Coulborne F, Sutherland G, Corbett D (1997) Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 14:171–201CrossRefGoogle Scholar
  27. Curry A et al (2010) Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity. Neurol Res 32:756–762PubMedCrossRefGoogle Scholar
  28. Davis W et al (2007) Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res 29:382–387PubMedCrossRefGoogle Scholar
  29. del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81PubMedCrossRefGoogle Scholar
  30. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894PubMedCrossRefGoogle Scholar
  31. Diao C, Zhu L, Wang H (2003) Cooling and rewarming for brain ischemia or injury: theoretical analysis. Ann Biomed Eng 31:346–353PubMedCrossRefGoogle Scholar
  32. Dietrich WD, Busto R, Valdés I, Loor Y (1990a) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21:1318–1325PubMedCrossRefGoogle Scholar
  33. Dietrich WD, Busto R, Halley M, Valdés I (1990b) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49:486–497PubMedCrossRefGoogle Scholar
  34. Dietrich WD, Halley M, Valdés I, Busto R (1991) Interrelationships between increased vascular permeability and acute neuronal damage following temperature controlled brain ischemia in rats. Acta Neuropathol 81:615–625PubMedCrossRefGoogle Scholar
  35. Dietrich WD et al (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13:541–549PubMedCrossRefGoogle Scholar
  36. Ding Y et al (2003) Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurol Res 23:189–194PubMedCrossRefGoogle Scholar
  37. Ding Y et al (2004a) Neuroprotection of regional brain cooling and local saline infusion into ischemic territory in rats with transient middle cerebral artery occlusion. Neurosurgery 54:956–965PubMedCrossRefGoogle Scholar
  38. Ding Y, Li J et al (2004b) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583–591PubMedCrossRefGoogle Scholar
  39. Ding YH, Luan XD et al (2004c) Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res 1:411–420PubMedCrossRefGoogle Scholar
  40. Ding YH et al (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol (Berl) 109:237–246CrossRefGoogle Scholar
  41. Ding YH, Ding Y et al (2006a) Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res 28:184–189PubMedCrossRefGoogle Scholar
  42. Ding YH, Li J et al (2006b) Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol (Berl) 112:74–84CrossRefGoogle Scholar
  43. Ding YH, Mrizek M et al (2006c) Exercise preconditioning reduces brain damage and inhibits TNF-α receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res 3:263–271PubMedCrossRefGoogle Scholar
  44. Du F et al (2010) Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by upregulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta 1802:1048–1052PubMedCrossRefGoogle Scholar
  45. Endres M et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54:582–590PubMedCrossRefGoogle Scholar
  46. Evenson KR et al (1999) Physical activity and ischemic stroke risk. The atherosclerosis risk in communities study. Stroke 30:1333–1339PubMedCrossRefGoogle Scholar
  47. Fajardo LF et al (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140:539–544PubMedGoogle Scholar
  48. Gillum RF, Mussolino ME, Ingram DD (1996) Physical activity and stroke incidence in women and men. The NHANES I Epidemiologic Follow-up Study. Am J Epidemiol 143:860–869PubMedCrossRefGoogle Scholar
  49. Goel G et al (2010) Combined effect of tumor necrosis factor (TNF)-α and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study. Neurosci Lett 483:162–166PubMedCrossRefGoogle Scholar
  50. Greer DM et al (2008) Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis. Stroke 39:3029–3035PubMedCrossRefGoogle Scholar
  51. Gu Z et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190PubMedCrossRefGoogle Scholar
  52. Guo M et al (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 151:340–351PubMedCrossRefGoogle Scholar
  53. Hallenbeck JM et al (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17:246–253PubMedCrossRefGoogle Scholar
  54. Hamann GF et al (2002) Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 22:526–533PubMedCrossRefGoogle Scholar
  55. Hayes K et al (2008) Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol 115:289–296PubMedCrossRefGoogle Scholar
  56. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92:4666–4670PubMedCrossRefGoogle Scholar
  57. Holtzclaw BJ (1992) The febrile response in critical care: state of the science. Heart Lung 21:482–581PubMedGoogle Scholar
  58. Hu G et al (2004) Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 43:25–30PubMedCrossRefGoogle Scholar
  59. Huang ZG et al (1999) Biphasic opening of the blood–brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 26:298–304PubMedGoogle Scholar
  60. Huang WJ et al (2009) Transcriptional upregulation of HSP70–2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 124:298–305PubMedCrossRefGoogle Scholar
  61. Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414PubMedCrossRefGoogle Scholar
  62. Inamasu J et al (2000) Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal ischemia in rats. J Neuroimmunol 109:66–74PubMedCrossRefGoogle Scholar
  63. Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163PubMedCrossRefGoogle Scholar
  64. Jorgensen HS et al (1999) What determines good recovery in patients with the most severe strokes? The Copenhagen Stroke Study. Stroke 30:2008–2012PubMedCrossRefGoogle Scholar
  65. Kammersgaard LP et al (2000) Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a case-control study: the Copenhagen Stroke Study. Stroke 31:2251–2256PubMedCrossRefGoogle Scholar
  66. Kammersgaard LP et al (2002) Admission body temperature predicts long-term mortality after acute stroke The Copenhagen Stroke Study. Stroke 33:1759–1762PubMedCrossRefGoogle Scholar
  67. Karibe H et al (1994) Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res 649:12–18PubMedCrossRefGoogle Scholar
  68. Kawai N, Okauchi M, Morisaki K, Nagao S (2000) Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke 31:1989CrossRefGoogle Scholar
  69. Kelty JD et al (2002) Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J Neurosci 22:RC193PubMedGoogle Scholar
  70. Kim Y et al (1996) Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 27:2274–2280PubMedCrossRefGoogle Scholar
  71. Kim H et al (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546PubMedCrossRefGoogle Scholar
  72. Kimura A et al (2002) Moderate hypothermia delays pro-inflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med 30:1499–1502PubMedCrossRefGoogle Scholar
  73. Kinni H et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 1388:48–55PubMedCrossRefGoogle Scholar
  74. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296PubMedCrossRefGoogle Scholar
  75. Kleim JA, Cooper NR, VandenBerg PM (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6PubMedCrossRefGoogle Scholar
  76. Kloner RA (2001) Preinfarct angina and exercise: yet another reason to stay physically active. J Am Coll Cardiol 38:1366–1368PubMedCrossRefGoogle Scholar
  77. Kollmar R et al (2002) Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia. Stroke 33:1899–1904PubMedCrossRefGoogle Scholar
  78. Konstas AA (2007) A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain. J Appl Physiol 102:1329–1340PubMedCrossRefGoogle Scholar
  79. Kuipers SD, Bramham CR (2006) Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Dev 9:580–586Google Scholar
  80. Larson EB et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81PubMedGoogle Scholar
  81. Lazou A et al (2006) Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: the role of Bcl-2 family proteins and ERK1/2. Apoptosis 11:2195–2204PubMedCrossRefGoogle Scholar
  82. Leasure JL, Grider M (2010) The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Exp Neurol 226:58–67PubMedCrossRefGoogle Scholar
  83. Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465PubMedCrossRefGoogle Scholar
  84. Lee JE et al (2001) Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170:129–139PubMedCrossRefGoogle Scholar
  85. Lee CD, Folsom AR, Blair SN (2003) Physical activity and stroke risk: a meta-analysis. Stroke 34:2475–2481PubMedCrossRefGoogle Scholar
  86. Li Y, Chopp M, Yoshida Y, Levine SR (1992) Distribution of 72-kDa heat-shock protein in rat brain after hyperthermia. Acta Neuropathol 84:94–99PubMedCrossRefGoogle Scholar
  87. Li J et al (2004) Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis. Neurol Res 26:677–683PubMedCrossRefGoogle Scholar
  88. Li J et al (2005) Increased astrocyte proliferation in rats after running exercise. Neurosci Lett 386:160–164PubMedCrossRefGoogle Scholar
  89. Liebelt B et al (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166:1091–1100PubMedCrossRefGoogle Scholar
  90. Liu J et al (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144–153PubMedGoogle Scholar
  91. Lloyd PG et al (2005) VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats. Am J Physiol Heart Circ Physiol 288:H759–768PubMedCrossRefGoogle Scholar
  92. Luan X et al (2004) Regional brain cooling induced by vascular saline infusion into ischemic territory reduces brain inflammation in stroke. Acta Neuropathol 107:227–234PubMedCrossRefGoogle Scholar
  93. Maier CM et al (2001) Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg 94:90–96PubMedCrossRefGoogle Scholar
  94. Masada T et al (2001) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21:22–33PubMedCrossRefGoogle Scholar
  95. Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J (2005) HSP-70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910PubMedCrossRefGoogle Scholar
  96. McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res 891:168–175PubMedCrossRefGoogle Scholar
  97. McFarlin BK et al (2006) Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci Med Sci 61:388–393PubMedCrossRefGoogle Scholar
  98. Mellergard P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31:671–677PubMedCrossRefGoogle Scholar
  99. Mitchell HM, White DM, Domowicz MS, Kraig RP (2010) Cold preconditioning neuroprotection depends on TNF- and is enhanced by blockade of IL-11. J Neurochem 117:187–196PubMedCrossRefGoogle Scholar
  100. Miyazawa T, Tamura A, Fukui S, Hossmann KA (2003) Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies. Neurol Res 25:457–464PubMedCrossRefGoogle Scholar
  101. Moore EM, Nichol AD, Bernard SA, Bellomo R (2011) Therapeutic hypothermia: benefits, mechanisms and potential clinical applications in neurological, cardiac and kidney injury. Injury 42(9):843–854PubMedCrossRefGoogle Scholar
  102. Morimoto T, Ginsberg MD, Dietrich WD, Zhao W (1997) Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res 746:43–51PubMedCrossRefGoogle Scholar
  103. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490PubMedCrossRefGoogle Scholar
  104. Nelson DA, Nunneley SA (1998) Brain temperature and limits on transcranial cooling in humans: quantitative modeling results. Eur J Appl Physiol Occup Physiol 78:353–359PubMedCrossRefGoogle Scholar
  105. Nishio S et al (1999) Hypothermia induced ischemic tolerance. Ann N Y Acad Sci 890:26–41PubMedCrossRefGoogle Scholar
  106. Nishio S et al (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93:845–851PubMedCrossRefGoogle Scholar
  107. Noble EG et al (1999) Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol 86:1696–1701PubMedCrossRefGoogle Scholar
  108. Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380PubMedCrossRefGoogle Scholar
  109. Pellacani A et al (2001) Down-regulation of high mobility group-I(Y) protein contributes to the inhibition of nitric-oxide synthase 2 by transforming growth factor-betal. J Biol Chem 276:1653–1659PubMedCrossRefGoogle Scholar
  110. Perella MA et al (1999) High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J Biol Chem 274:9045–9052CrossRefGoogle Scholar
  111. Planas AM, Sole S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846PubMedCrossRefGoogle Scholar
  112. Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 37:S186–S202PubMedCrossRefGoogle Scholar
  113. Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140:305–314PubMedCrossRefGoogle Scholar
  114. Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37:765–782PubMedCrossRefGoogle Scholar
  115. Rabadi MH (2007) Randomized clinical stroke rehabilitation trials in 2005. Neurochem Res 32:807–821PubMedCrossRefGoogle Scholar
  116. Reyes R et al (2006) Early inflammatory response in rat brain after peripheral thermal injury. Neurosci Lett 407:11–15PubMedCrossRefGoogle Scholar
  117. Romanic AM et al (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030PubMedCrossRefGoogle Scholar
  118. Romera C et al (2004) In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 24:1350–1357PubMedCrossRefGoogle Scholar
  119. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci 18:130–136PubMedCrossRefGoogle Scholar
  120. Rybnikova E et al (2006) The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 1089:195–202PubMedCrossRefGoogle Scholar
  121. Saini M et al (2009) Effect of hyperthermia on prognosis after acute ischemic stroke. Stroke 40:3051–3059PubMedCrossRefGoogle Scholar
  122. Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506PubMedCrossRefGoogle Scholar
  123. Schubert D (2005) Glucose metabolism and Alzheimer’s disease. Ageing Res Rev 4:240–257PubMedCrossRefGoogle Scholar
  124. Schwab S et al (1998) Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta Neurochir Suppl 71:131–134PubMedGoogle Scholar
  125. Schwab S et al (2001) Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 32:2033–2035PubMedCrossRefGoogle Scholar
  126. Sessler DI (2009) Thermoregulatory defense mechanisms. Crit Care Med 37:S203–S210PubMedCrossRefGoogle Scholar
  127. Steiner T et al (2000) Effect and feasibility of controlled rewarming after moderate hypothermia in stroke patients with malignant infarction of the middle cerebral artery. Stroke 32:2833–2835CrossRefGoogle Scholar
  128. Sternau R, et al (1992) Ischemia induced neurotransmitter release: effects of mild intraischemic hyperthermia. Role Neurotrans Brain Injury. Plenum Press, New York, pp 33–38Google Scholar
  129. Stetler RA, Zhang F, Liu C, Chen J (2008) Ischemic tolerance as an active and intrinsic neuroprotective mechanism. Handb Clin Neurol 92:171–195CrossRefGoogle Scholar
  130. Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022PubMedCrossRefGoogle Scholar
  131. Stummer W et al (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25:1862–1869PubMedCrossRefGoogle Scholar
  132. Suehiro E et al (2004) Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma 21:1706–1711PubMedCrossRefGoogle Scholar
  133. Swain RA et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046PubMedCrossRefGoogle Scholar
  134. Takagi K et al (1994) Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Physiol 267:H1770–H1776PubMedGoogle Scholar
  135. Tang XN, Yenari MA (2010) Hypothermia as a cytoprotective strategy in ischemic tissue injury. Ageing Res Rev 9:61–68PubMedCrossRefGoogle Scholar
  136. Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neural Repair 19:283–295CrossRefGoogle Scholar
  137. Wang X, Lo EH (2003) Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol 28:229–244PubMedCrossRefGoogle Scholar
  138. Wang Y et al (2000a) Influence of admission body temperature on stroke mortality. Stroke 31:404–409PubMedCrossRefGoogle Scholar
  139. Wang X, Li X et al (2000b) Detection of tumor necrosis factor-alpha mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J Cereb Blood Flow Metab 20:15–20PubMedCrossRefGoogle Scholar
  140. Wang RY, Yang YR, Yu SM (2001) Protective effects of treadmill training on infarction in rats. Brain Res 922:140–143PubMedCrossRefGoogle Scholar
  141. Wang F, Ding Y et al (2010) Comparison of neuroprotective effects in ischemic rats with different hypothermia procedures. Neurol Res 32:378–383PubMedCrossRefGoogle Scholar
  142. Wendel-Vos GC et al (2004) Physical activity and stroke. A meta-analysis of observational data. Int J Epidemiol 33:787–798PubMedCrossRefGoogle Scholar
  143. Williamson JW et al (1997) Activation of the insular cortex during dynamic exercise in humans. J Physiol 503:277–283PubMedCrossRefGoogle Scholar
  144. Xu H, Aibiki M, Nagoya J (2002) Neuroprotective effects of hyperthermic preconditioning on infarcted volume after middle cerebral artery occlusion in rats: role of adenosine receptors. Crit Care Med 30:1126–1130PubMedCrossRefGoogle Scholar
  145. Yamada K, Inagaki N (2005) Neuroprotection by KATP channels. J Mol Cell Cardiol 38:945–949PubMedCrossRefGoogle Scholar
  146. Yang GY, Betz AL (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25:1658–1664PubMedCrossRefGoogle Scholar
  147. Yang YL, Lin MT (1999) Heat shock protein expression protects against cerebral ischemia and monoamine overload in the rat. Am J Physiol 276:H1961–H1967PubMedGoogle Scholar
  148. Yuan HB, Huang Y, Zheng S, Zuo Z (2004) Hypothermic preconditioning increases survival of Purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology 100:331–337PubMedCrossRefGoogle Scholar
  149. Yunoki M et al (2002) Characteristics of hypothermic preconditioning influencing the induction of delayed ischemic tolerance. J Neurosurg 97:650–657PubMedCrossRefGoogle Scholar
  150. Yunoki M et al (2003) Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol 181:291–300PubMedCrossRefGoogle Scholar
  151. Zhang P et al (2000) Hyperthermic preconditioning protects against spinal cord ischemic injury. Ann Thorac Surg 70:1490–1495PubMedCrossRefGoogle Scholar
  152. Zhu L et al (2007) Upregulation of HIF-1alpha expression induced by ginkgolides in hypoxic neurons. Brain Res 1166:1–8PubMedCrossRefGoogle Scholar
  153. Zhu L et al (2008) Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1a expression and HIF-1 DNA binding activity. J Cell Biochem 103:564–575CrossRefGoogle Scholar
  154. Zwagerman N, Plumlee C et al (2010a) Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res 32:123–126PubMedCrossRefGoogle Scholar
  155. Zwagerman N, Sprague S et al (2010b) Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res 32:523–529PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ryan Kochanski
    • 1
  • David DornbosIII
    • 1
  • Yuchuan Ding
    • 1
    Email author
  1. 1.Department of Neurological SurgeryWayne State University School of MedicineDetroitUSA

Personalised recommendations