Skip to main content

Neuroprotection and Physical Preconditioning: Exercise, Hypothermia, and Hyperthermia

  • Chapter
  • First Online:
Innate Tolerance in the CNS

Abstract

Exercise, hypothermia, and hyperthermia are preconditioning methods that vastly differ in terms of the physical properties of their respective stimuli. Despite their differences, these varying physical stimuli provide different value in terms of potential clinical utility. This chapter reviews the features and mechanisms underlying the cerebral protection that is conferred through the utilization of exercise, hypothermia, and hyperthermia. The neuroprotection derived from these various treatment modalities underlies their use in clinical settings, and it provides necessary background information for potential therapeutic and pharmaceutical interventions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abete P et al (2001) High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J Am Coll Cardiol 38:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Aibiki M et al (1999) Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans. J Neurotrauma 16:225–232

    Article  PubMed  CAS  Google Scholar 

  • Ang ET et al (2003) Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 118:335–345

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Lee SR, Lo EH (2003) Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Glia 43:254–264

    Article  PubMed  Google Scholar 

  • Asahi M et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  • Barone FC, Feurstein GZ, White RF (1997) Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosci Biobehav Rev 21:31–44

    Article  PubMed  CAS  Google Scholar 

  • Bequet F et al (2001) Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. Acta Physiol Scand 173:223–230

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M et al (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11:4159–4170

    Article  PubMed  Google Scholar 

  • Bernaudin M et al (2002) Normobaric Hypoxia Induces Tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403

    Article  PubMed  Google Scholar 

  • Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988

    Article  PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  • Busto R et al (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    Article  PubMed  CAS  Google Scholar 

  • Cao CX et al (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry K et al (2010) Matrix metalloproteinase-9 (MMP-9) expression and extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation in exercise-reduced neuronal apoptosis after stroke. Neurosci Lett 474:109–114

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Simon R (1997) Ischemic tolerance in the brain. Neurology 48:306–311

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chopp M, Welch KM (1991) Effect of mild hyperthermia on the ischemic infarct volume after middle cerebral artery occlusion in the rat. Neurology 41:1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Ji X, Ding Y-C, Luo Y, Wang G, Sun X, Chen J, Ling F (2009) Focal perfusion of circulating cooled blood reduces the infarction volume and improves neurological outcome in middle artery occlusion. Neurological Res 31:340–345

    Article  Google Scholar 

  • Chi OZ, Liu X, Weiss HR (2001) Effects of mild hypothermia on blood–brain barrier disruption during isoflurane or pentobarbital anesthesia. Anesthesiology 95:933–938

    Article  PubMed  CAS  Google Scholar 

  • Choi JH et al (2010) Selective brain cooling with endovascular intracarotid infusion of cold saline: a pilot feasibility study. ANJR Am J Neuroradiol 31:928–934

    Article  CAS  Google Scholar 

  • Chopp M et al (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in rat. Neurology 39(1989):1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Clark AW et al (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238:53–56

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Cory S et al (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288

    PubMed  CAS  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Physiol Sci 14:125–130

    Google Scholar 

  • Corbett D, Thornhill J (2000) Temperature modulation (hypothermic and hyperthermic conditions) and its influence on histological and behavioral outcomes following cerebral ischemia. Brain Pathol 10:145–152

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472

    Article  PubMed  CAS  Google Scholar 

  • Coulborne F, Sutherland G, Corbett D (1997) Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 14:171–201

    Article  Google Scholar 

  • Curry A et al (2010) Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity. Neurol Res 32:756–762

    Article  PubMed  CAS  Google Scholar 

  • Davis W et al (2007) Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res 29:382–387

    Article  PubMed  CAS  Google Scholar 

  • del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81

    Article  PubMed  Google Scholar 

  • del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    Article  PubMed  Google Scholar 

  • Diao C, Zhu L, Wang H (2003) Cooling and rewarming for brain ischemia or injury: theoretical analysis. Ann Biomed Eng 31:346–353

    Article  PubMed  Google Scholar 

  • Dietrich WD, Busto R, Valdés I, Loor Y (1990a) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21:1318–1325

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Halley M, Valdés I (1990b) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49:486–497

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Halley M, Valdés I, Busto R (1991) Interrelationships between increased vascular permeability and acute neuronal damage following temperature controlled brain ischemia in rats. Acta Neuropathol 81:615–625

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD et al (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13:541–549

    Article  PubMed  CAS  Google Scholar 

  • Ding Y et al (2003) Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurol Res 23:189–194

    Article  PubMed  Google Scholar 

  • Ding Y et al (2004a) Neuroprotection of regional brain cooling and local saline infusion into ischemic territory in rats with transient middle cerebral artery occlusion. Neurosurgery 54:956–965

    Article  PubMed  Google Scholar 

  • Ding Y, Li J et al (2004b) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583–591

    Article  PubMed  CAS  Google Scholar 

  • Ding YH, Luan XD et al (2004c) Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res 1:411–420

    Article  PubMed  CAS  Google Scholar 

  • Ding YH et al (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol (Berl) 109:237–246

    Article  CAS  Google Scholar 

  • Ding YH, Ding Y et al (2006a) Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res 28:184–189

    Article  PubMed  Google Scholar 

  • Ding YH, Li J et al (2006b) Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol (Berl) 112:74–84

    Article  CAS  Google Scholar 

  • Ding YH, Mrizek M et al (2006c) Exercise preconditioning reduces brain damage and inhibits TNF-α receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res 3:263–271

    Article  PubMed  CAS  Google Scholar 

  • Du F et al (2010) Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by upregulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta 1802:1048–1052

    Article  PubMed  CAS  Google Scholar 

  • Endres M et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54:582–590

    Article  PubMed  Google Scholar 

  • Evenson KR et al (1999) Physical activity and ischemic stroke risk. The atherosclerosis risk in communities study. Stroke 30:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Fajardo LF et al (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140:539–544

    PubMed  CAS  Google Scholar 

  • Gillum RF, Mussolino ME, Ingram DD (1996) Physical activity and stroke incidence in women and men. The NHANES I Epidemiologic Follow-up Study. Am J Epidemiol 143:860–869

    Article  PubMed  CAS  Google Scholar 

  • Goel G et al (2010) Combined effect of tumor necrosis factor (TNF)-α and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study. Neurosci Lett 483:162–166

    Article  PubMed  CAS  Google Scholar 

  • Greer DM et al (2008) Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis. Stroke 39:3029–3035

    Article  PubMed  Google Scholar 

  • Gu Z et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Guo M et al (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 151:340–351

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck JM et al (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17:246–253

    Article  PubMed  CAS  Google Scholar 

  • Hamann GF et al (2002) Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 22:526–533

    Article  PubMed  Google Scholar 

  • Hayes K et al (2008) Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol 115:289–296

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92:4666–4670

    Article  PubMed  CAS  Google Scholar 

  • Holtzclaw BJ (1992) The febrile response in critical care: state of the science. Heart Lung 21:482–581

    PubMed  CAS  Google Scholar 

  • Hu G et al (2004) Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 43:25–30

    Article  PubMed  CAS  Google Scholar 

  • Huang ZG et al (1999) Biphasic opening of the blood–brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 26:298–304

    PubMed  CAS  Google Scholar 

  • Huang WJ et al (2009) Transcriptional upregulation of HSP70–2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 124:298–305

    Article  PubMed  CAS  Google Scholar 

  • Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414

    Article  PubMed  CAS  Google Scholar 

  • Inamasu J et al (2000) Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal ischemia in rats. J Neuroimmunol 109:66–74

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163

    Article  PubMed  Google Scholar 

  • Jorgensen HS et al (1999) What determines good recovery in patients with the most severe strokes? The Copenhagen Stroke Study. Stroke 30:2008–2012

    Article  PubMed  CAS  Google Scholar 

  • Kammersgaard LP et al (2000) Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a case-control study: the Copenhagen Stroke Study. Stroke 31:2251–2256

    Article  PubMed  CAS  Google Scholar 

  • Kammersgaard LP et al (2002) Admission body temperature predicts long-term mortality after acute stroke The Copenhagen Stroke Study. Stroke 33:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Karibe H et al (1994) Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res 649:12–18

    Article  PubMed  CAS  Google Scholar 

  • Kawai N, Okauchi M, Morisaki K, Nagao S (2000) Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke 31:1989

    Article  Google Scholar 

  • Kelty JD et al (2002) Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J Neurosci 22:RC193

    PubMed  Google Scholar 

  • Kim Y et al (1996) Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 27:2274–2280

    Article  PubMed  CAS  Google Scholar 

  • Kim H et al (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    Article  PubMed  CAS  Google Scholar 

  • Kimura A et al (2002) Moderate hypothermia delays pro-inflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med 30:1499–1502

    Article  PubMed  CAS  Google Scholar 

  • Kinni H et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 1388:48–55

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  • Kleim JA, Cooper NR, VandenBerg PM (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA (2001) Preinfarct angina and exercise: yet another reason to stay physically active. J Am Coll Cardiol 38:1366–1368

    Article  PubMed  CAS  Google Scholar 

  • Kollmar R et al (2002) Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia. Stroke 33:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Konstas AA (2007) A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain. J Appl Physiol 102:1329–1340

    Article  PubMed  Google Scholar 

  • Kuipers SD, Bramham CR (2006) Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Dev 9:580–586

    CAS  Google Scholar 

  • Larson EB et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81

    PubMed  Google Scholar 

  • Lazou A et al (2006) Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: the role of Bcl-2 family proteins and ERK1/2. Apoptosis 11:2195–2204

    Article  PubMed  CAS  Google Scholar 

  • Leasure JL, Grider M (2010) The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Exp Neurol 226:58–67

    Article  PubMed  Google Scholar 

  • Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465

    Article  PubMed  CAS  Google Scholar 

  • Lee JE et al (2001) Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170:129–139

    Article  PubMed  CAS  Google Scholar 

  • Lee CD, Folsom AR, Blair SN (2003) Physical activity and stroke risk: a meta-analysis. Stroke 34:2475–2481

    Article  PubMed  Google Scholar 

  • Li Y, Chopp M, Yoshida Y, Levine SR (1992) Distribution of 72-kDa heat-shock protein in rat brain after hyperthermia. Acta Neuropathol 84:94–99

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (2004) Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis. Neurol Res 26:677–683

    Article  PubMed  Google Scholar 

  • Li J et al (2005) Increased astrocyte proliferation in rats after running exercise. Neurosci Lett 386:160–164

    Article  PubMed  CAS  Google Scholar 

  • Liebelt B et al (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144–153

    PubMed  CAS  Google Scholar 

  • Lloyd PG et al (2005) VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats. Am J Physiol Heart Circ Physiol 288:H759–768

    Article  PubMed  CAS  Google Scholar 

  • Luan X et al (2004) Regional brain cooling induced by vascular saline infusion into ischemic territory reduces brain inflammation in stroke. Acta Neuropathol 107:227–234

    Article  PubMed  Google Scholar 

  • Maier CM et al (2001) Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg 94:90–96

    Article  PubMed  CAS  Google Scholar 

  • Masada T et al (2001) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21:22–33

    Article  PubMed  CAS  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J (2005) HSP-70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910

    Article  PubMed  CAS  Google Scholar 

  • McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res 891:168–175

    Article  PubMed  CAS  Google Scholar 

  • McFarlin BK et al (2006) Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci Med Sci 61:388–393

    Article  PubMed  Google Scholar 

  • Mellergard P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31:671–677

    Article  PubMed  CAS  Google Scholar 

  • Mitchell HM, White DM, Domowicz MS, Kraig RP (2010) Cold preconditioning neuroprotection depends on TNF- and is enhanced by blockade of IL-11. J Neurochem 117:187–196

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa T, Tamura A, Fukui S, Hossmann KA (2003) Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies. Neurol Res 25:457–464

    Article  PubMed  Google Scholar 

  • Moore EM, Nichol AD, Bernard SA, Bellomo R (2011) Therapeutic hypothermia: benefits, mechanisms and potential clinical applications in neurological, cardiac and kidney injury. Injury 42(9):843–854

    Article  PubMed  Google Scholar 

  • Morimoto T, Ginsberg MD, Dietrich WD, Zhao W (1997) Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res 746:43–51

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490

    Article  PubMed  CAS  Google Scholar 

  • Nelson DA, Nunneley SA (1998) Brain temperature and limits on transcranial cooling in humans: quantitative modeling results. Eur J Appl Physiol Occup Physiol 78:353–359

    Article  PubMed  CAS  Google Scholar 

  • Nishio S et al (1999) Hypothermia induced ischemic tolerance. Ann N Y Acad Sci 890:26–41

    Article  PubMed  CAS  Google Scholar 

  • Nishio S et al (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93:845–851

    Article  PubMed  CAS  Google Scholar 

  • Noble EG et al (1999) Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol 86:1696–1701

    Article  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Pellacani A et al (2001) Down-regulation of high mobility group-I(Y) protein contributes to the inhibition of nitric-oxide synthase 2 by transforming growth factor-betal. J Biol Chem 276:1653–1659

    Article  PubMed  CAS  Google Scholar 

  • Perella MA et al (1999) High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J Biol Chem 274:9045–9052

    Article  Google Scholar 

  • Planas AM, Sole S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846

    Article  PubMed  CAS  Google Scholar 

  • Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 37:S186–S202

    Article  PubMed  Google Scholar 

  • Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140:305–314

    Article  PubMed  CAS  Google Scholar 

  • Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37:765–782

    Article  PubMed  Google Scholar 

  • Rabadi MH (2007) Randomized clinical stroke rehabilitation trials in 2005. Neurochem Res 32:807–821

    Article  PubMed  CAS  Google Scholar 

  • Reyes R et al (2006) Early inflammatory response in rat brain after peripheral thermal injury. Neurosci Lett 407:11–15

    Article  PubMed  CAS  Google Scholar 

  • Romanic AM et al (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    Article  PubMed  CAS  Google Scholar 

  • Romera C et al (2004) In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 24:1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci 18:130–136

    Article  PubMed  CAS  Google Scholar 

  • Rybnikova E et al (2006) The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats. Brain Res 1089:195–202

    Article  PubMed  CAS  Google Scholar 

  • Saini M et al (2009) Effect of hyperthermia on prognosis after acute ischemic stroke. Stroke 40:3051–3059

    Article  PubMed  Google Scholar 

  • Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506

    Article  PubMed  Google Scholar 

  • Schubert D (2005) Glucose metabolism and Alzheimer’s disease. Ageing Res Rev 4:240–257

    Article  PubMed  Google Scholar 

  • Schwab S et al (1998) Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta Neurochir Suppl 71:131–134

    PubMed  CAS  Google Scholar 

  • Schwab S et al (2001) Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 32:2033–2035

    Article  PubMed  CAS  Google Scholar 

  • Sessler DI (2009) Thermoregulatory defense mechanisms. Crit Care Med 37:S203–S210

    Article  PubMed  CAS  Google Scholar 

  • Steiner T et al (2000) Effect and feasibility of controlled rewarming after moderate hypothermia in stroke patients with malignant infarction of the middle cerebral artery. Stroke 32:2833–2835

    Article  Google Scholar 

  • Sternau R, et al (1992) Ischemia induced neurotransmitter release: effects of mild intraischemic hyperthermia. Role Neurotrans Brain Injury. Plenum Press, New York, pp 33–38

    Google Scholar 

  • Stetler RA, Zhang F, Liu C, Chen J (2008) Ischemic tolerance as an active and intrinsic neuroprotective mechanism. Handb Clin Neurol 92:171–195

    Article  Google Scholar 

  • Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022

    Article  PubMed  Google Scholar 

  • Stummer W et al (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25:1862–1869

    Article  PubMed  CAS  Google Scholar 

  • Suehiro E et al (2004) Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma 21:1706–1711

    Article  PubMed  Google Scholar 

  • Swain RA et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Takagi K et al (1994) Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Physiol 267:H1770–H1776

    PubMed  CAS  Google Scholar 

  • Tang XN, Yenari MA (2010) Hypothermia as a cytoprotective strategy in ischemic tissue injury. Ageing Res Rev 9:61–68

    Article  PubMed  Google Scholar 

  • Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neural Repair 19:283–295

    Article  Google Scholar 

  • Wang X, Lo EH (2003) Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol 28:229–244

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2000a) Influence of admission body temperature on stroke mortality. Stroke 31:404–409

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li X et al (2000b) Detection of tumor necrosis factor-alpha mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J Cereb Blood Flow Metab 20:15–20

    Article  PubMed  Google Scholar 

  • Wang RY, Yang YR, Yu SM (2001) Protective effects of treadmill training on infarction in rats. Brain Res 922:140–143

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Ding Y et al (2010) Comparison of neuroprotective effects in ischemic rats with different hypothermia procedures. Neurol Res 32:378–383

    Article  PubMed  CAS  Google Scholar 

  • Wendel-Vos GC et al (2004) Physical activity and stroke. A meta-analysis of observational data. Int J Epidemiol 33:787–798

    Article  PubMed  CAS  Google Scholar 

  • Williamson JW et al (1997) Activation of the insular cortex during dynamic exercise in humans. J Physiol 503:277–283

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Aibiki M, Nagoya J (2002) Neuroprotective effects of hyperthermic preconditioning on infarcted volume after middle cerebral artery occlusion in rats: role of adenosine receptors. Crit Care Med 30:1126–1130

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Inagaki N (2005) Neuroprotection by KATP channels. J Mol Cell Cardiol 38:945–949

    Article  PubMed  CAS  Google Scholar 

  • Yang GY, Betz AL (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25:1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Lin MT (1999) Heat shock protein expression protects against cerebral ischemia and monoamine overload in the rat. Am J Physiol 276:H1961–H1967

    PubMed  CAS  Google Scholar 

  • Yuan HB, Huang Y, Zheng S, Zuo Z (2004) Hypothermic preconditioning increases survival of Purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology 100:331–337

    Article  PubMed  CAS  Google Scholar 

  • Yunoki M et al (2002) Characteristics of hypothermic preconditioning influencing the induction of delayed ischemic tolerance. J Neurosurg 97:650–657

    Article  PubMed  Google Scholar 

  • Yunoki M et al (2003) Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol 181:291–300

    Article  PubMed  Google Scholar 

  • Zhang P et al (2000) Hyperthermic preconditioning protects against spinal cord ischemic injury. Ann Thorac Surg 70:1490–1495

    Article  PubMed  CAS  Google Scholar 

  • Zhu L et al (2007) Upregulation of HIF-1alpha expression induced by ginkgolides in hypoxic neurons. Brain Res 1166:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhu L et al (2008) Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1a expression and HIF-1 DNA binding activity. J Cell Biochem 103:564–575

    Article  CAS  Google Scholar 

  • Zwagerman N, Plumlee C et al (2010a) Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res 32:123–126

    Article  PubMed  Google Scholar 

  • Zwagerman N, Sprague S et al (2010b) Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res 32:523–529

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchuan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kochanski, R., Dornbos, D., Ding, Y. (2013). Neuroprotection and Physical Preconditioning: Exercise, Hypothermia, and Hyperthermia. In: Gidday, J., Perez-Pinzon, M., Zhang, J. (eds) Innate Tolerance in the CNS. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9695-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9695-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9694-7

  • Online ISBN: 978-1-4419-9695-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics