Skip to main content

Intrinsic Neuroprotection in Traumatic Brain Injury

  • Chapter
  • First Online:
Innate Tolerance in the CNS

Abstract

During the past decade, our understanding of the cellular and molecular changes that occur after traumatic brain injury (TBI) has significantly increased, and the notion that endogenous neuroprotective cascades are also set in motion has been explored. One may speculate that the balance between the harmful and protective processes determines the final outcome of TBI, and that the vulnerability of the injured brain to a given insult depends upon its ability to recruit its own endogenous neuroprotective mechanisms. These may be activated as either a direct response to harmful signals, such as increased intracellular calcium levels, or from a pre-injury exposure to a precondition that provides enhanced intrinsic defensive ability. Cascades that are involved in the regulation of cell fate, repair, plasticity, memory, and motor skills, activated by the protein kinases such as mitogen-activated protein kinase (MAPK), Akt, and GSK have a special impact on the balance between injury and repair that determines the final outcome of the cell, tissue, and organism after TBI. Numerous studies have demonstrated the profound effect of preconditioning by brief ischemic or thermal exposures on the outcome of brain ischemic injury.

The present chapter focuses on two representative neuroprotective mechanisms: (1) The expression and function of the endocannabinoids (eCBs) and their respective receptors in the brain, on neurons, astrocytes, microglia, and the cerebrovasculature point to their role in multiple functions. The formation and accumulation of eCB in response to injury, along with their multipotent properties as antioxidants, vasodilators, anti-inflammatory agents, inhibitors of excitotoxicity, as well as their role in neurogenesis, suggest that their “on-demand” formation may represent an intrinsic neuroprotective and neuroregenerative response. Interestingly, these lipid mediators, via their specific receptors and coupling mechanisms, activate intracellular signaling cascades that are associated with promoting cell survival. (2) Long-term heat acclimation is a global long-term preconditioning paradigm that induces “cross-tolerance” against a variety of stressors, including TBI, where it conveys improved functional outcome. This is achieved by reprogramming of gene expression. Collectively, heat acclimation causes a two-tier response. Increase cytoprotective reserves suggesting that the cell is now endowed with “on-call” cytoprotective molecules without the need for de novo synthesis and abrupt component, namely, faster transcription during insult to improve renewal rate of stress-protein reserves. A discussion on the role of HIF-1α and of the antiapoptotic, antioxidant, and anti-inflammatory capacity is particularly emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assayag M, Gerstenblith G, Horowitz M (2010) Long- but not short-term heat acclimation produces an apoptosis-resistant cardiac phenotype: a lesson from heat stress and ischemic/reperfusion insults. Cell Stress Chaperones 15:651–664

    PubMed  CAS  Google Scholar 

  • Bahr BA, Karanian DA, Makanji SS, Makriyannis A (2006) Targeting the endocannabinoid system in treating brain disorders. Expert Opin Investig Drugs 15:351–365

    PubMed  CAS  Google Scholar 

  • Bayley M, Petersen SO, Knigge T, Köhler H, Holmstrup M (2001) Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect Physiol 47:1197–1204

    PubMed  CAS  Google Scholar 

  • Beit-Yannai E, Zhang R, Trembovler V, Samuni A, Shohami E (1996) Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res 717:22–28

    PubMed  CAS  Google Scholar 

  • Beit-Yannai E, Kohen R, Horowitz M, Trembovler V, Shohami E (1997) Changes of biological reducing activity in rat brain following closed head injury: a cyclic voltammetry study in normal and heat-acclimated rats. J Cereb Blood Flow Metab 17:273–279

    PubMed  CAS  Google Scholar 

  • Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM et al (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25:2530–2536

    PubMed  CAS  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    PubMed  CAS  Google Scholar 

  • Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express Epo mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278

    PubMed  CAS  Google Scholar 

  • Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    PubMed  CAS  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22: 123–131

    PubMed  CAS  Google Scholar 

  • Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos JA, Fernandez-Ruiz JJ et al (1999) Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun 256:377–380

    PubMed  CAS  Google Scholar 

  • Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J (2006) Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis 21(Suppl 2):38–47

    PubMed  CAS  Google Scholar 

  • Blesch A, Tuszynski MH (2007) Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 27:10535–10545

    PubMed  CAS  Google Scholar 

  • Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292:H19–H27

    PubMed  CAS  Google Scholar 

  • Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    PubMed  Google Scholar 

  • Bromberg Z, Horowitz M (2004) Mus Musculus: a model studying the dynamics of heat acclimation and cross tolerance between heat acclimation and oxygen deprivation in proceedings of the 1st integrated meeting on physiology and pharmacology of thermoregulation, Rhodes, Greece PPTR 2004. p 198 (abst)

    Google Scholar 

  • Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78:1192–1197

    PubMed  CAS  Google Scholar 

  • Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108:79–85

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K et al (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007

    PubMed  CAS  Google Scholar 

  • Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F et al (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130:2543–2553

    PubMed  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    PubMed  CAS  Google Scholar 

  • Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA et al (2000) A novel functional interaction between 2-arachidonoglycerol, an endocannabinoid, and endothelin-1 in human brain capillary endothelium. Circ Res 87:323–327

    PubMed  CAS  Google Scholar 

  • Cohen-Yeshurun A, Trembovler V, Alexandrovich A, Ryberg E, Greasley PJ, Mechoulam R, Shohami E, Leker RR (2011) N-arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J Cereb Blood Flow Metab 31:1768–1777

    PubMed  CAS  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    PubMed  CAS  Google Scholar 

  • Coomber B, O’Donoghue MF, Mason R (2008) Inhibition of endocannabinoid metabolism attenuates enhanced hippocampal neuronal activity induced by kainic acid. Synapse 62:746–755

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR et al (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376

    PubMed  CAS  Google Scholar 

  • Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Marzo V, De Petrocellis L, Bisogno T, Melck D (1999) Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. Lipids 34(Suppl): S319–S325

    PubMed  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    PubMed  CAS  Google Scholar 

  • du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A (2008) A role for the RISK pathway and K(ATP) channels in pre- and post-conditioning induced by levosimendan in the isolated guinea pig heart. Br J Pharmacol 154:41–50

    PubMed  Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    PubMed  CAS  Google Scholar 

  • Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y et al (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 12:2–29

    Google Scholar 

  • Faden AI, Knoblach SM, Movsesyan VA, Cernak I (2004) Novel small peptides with neuroprotective and nootropic properties. J Alzheimers Dis 6:S93–S97

    PubMed  CAS  Google Scholar 

  • Franklin A, Stella N (2003) Arachidonylcyclopropylamide increases microglial cell migration through cannabinoid CB2 and abnormal-cannabidiol-sensitive receptors. Eur J Pharmacol 474:195–198

    PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Rueda D, Gómez Del Pulgar T, Velasco G, Guzman M (2002) Mechanism of extracellular signal-regulated kinase activation by the CB1 cannabinoid receptor. Mol Pharmacol 62:1385–1392

    PubMed  CAS  Google Scholar 

  • Gilbert GL, Kim HJ, Waataja JJ, Thayer SA (2007) Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Res 1128:61–69

    PubMed  CAS  Google Scholar 

  • Glantz L, Avramovich A, Trembovler V, Gurvitz V, Kohen R, Eidelman LA, Shohami E (2005) Ischemic preconditioning increases antioxidants in the brain and peripheral organs after cerebral ischemia. Exp Neurol 192:117–124

    PubMed  CAS  Google Scholar 

  • Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R et al (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132:87–92

    PubMed  CAS  Google Scholar 

  • Hansen HH, Ikonomidou C, Bittigau P, Hansen SH, Hansen HS (2001) Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J Neurochem 76:39–46

    PubMed  CAS  Google Scholar 

  • Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–126

    PubMed  CAS  Google Scholar 

  • Hausenloy D, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116:173–191

    PubMed  CAS  Google Scholar 

  • Horowitz M (1998) Do cellular heat acclimation responses modulate central thermoregulatory activity? News Physiol Sci 13:218–225

    PubMed  Google Scholar 

  • Horowitz M (2002) Molecular and cellular to integrative heat defense during exposure to chronic heat. Comp Biochem Physiol A Mol Integr Physiol 131:475–483. Review

    PubMed  Google Scholar 

  • Horowitz M (2007) Heat acclimation and cross-tolerance against novel stressors: genomic-physiological linkage. Prog Brain Res 162:373–392

    PubMed  CAS  Google Scholar 

  • Horowitz M (2010) Genomics and proteomics of heat acclimation. Front Biosci (Schol Ed) 2:1068–1080. Review

    Google Scholar 

  • Horowitz M, Meiri U (1985) Thermoregulatory activity in the rat: effects of hypohydration, hypovolemia and hypertonicity and their interaction with short-term heat acclimation. Comp Biochem Physiol A Comp Physiol 82:577–582

    PubMed  CAS  Google Scholar 

  • Horowitz M, Meiri U (1993) Central and peripheral contributions to control of heart rate during heat acclimation. Pflugers Arch 422:386–392

    PubMed  CAS  Google Scholar 

  • Horowitz M, Eli-Berchoer L, Wapinsk I, Friedman N, Kodesh E (2004) Stress related genomic responses during the course of heat acclimation and its association with ischemic/reperfusion cross-tolerance. J Appl Physiol 97:1496–1507

    PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Rothwell NJ, Hopkins SJ, Nortje J, Carpenter KL, Timofeev I et al (2007) Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 24:1545–1557

    PubMed  Google Scholar 

  • Hwang J, Adamson C, Butler D, Janero DR, Makriyannis A, Bahr BA (2010) Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci 86:615–623

    PubMed  CAS  Google Scholar 

  • Karanian DA, Brown QB, Makriyannis A, Kosten TA, Bahr BA (2005) Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci 25:7813–7820

    PubMed  CAS  Google Scholar 

  • Kaur H, Jaggi AS, Singh N (2010) Modulation of neuroprotective effect of ischemic post-conditioning by dichlorobenzamil a Na(+)/Ca(2+) exchanger inhibitor in mice. Biol Pharm Bull 33:585–591

    PubMed  CAS  Google Scholar 

  • Kempermann G, Neumann H (2003) Neuroscience. Microglia: the enemy within? Science 302: 1689–1690

    PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    PubMed  Google Scholar 

  • Koch M, Kreutz S, Bottger C, Grabiec U, Ghadban C, Korf HW et al (2011) The cannabinoid WIN 55,212–2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav2.2 channels. Hippocampus 21:554–564

    PubMed  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    PubMed  CAS  Google Scholar 

  • Kutuk O, Basaga H (2006) Bcl-2 protein family: implications in vascular apoptosis and atherosclerosis. Apoptosis 11:1661–1675. Review

    PubMed  CAS  Google Scholar 

  • Leker RR, Shohami E (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Rev 39:55–73. Review

    PubMed  Google Scholar 

  • Leker RR, Gai N, Mechoulam R, Ovadia H (2003) Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 34:2000–2006

    PubMed  CAS  Google Scholar 

  • Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK (2001) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24:169–181. Review

    PubMed  CAS  Google Scholar 

  • Liu J, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144–C153

    PubMed  CAS  Google Scholar 

  • Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    PubMed  CAS  Google Scholar 

  • Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19:1609–1617

    PubMed  Google Scholar 

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol 276:R1506–R1515

    PubMed  CAS  Google Scholar 

  • Maloyan A, Eli-Berchoer L, Semenza GL, Gerstenblith G, Stern MD, Horowitz M (2005) HIF-1alpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics 23:79–88

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Gaoni Y (1965) Hashish. IV. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21:1223–1229

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    PubMed  CAS  Google Scholar 

  • Melis M, Pillolla G, Bisogno T, Minassi A, Petrosino S, Perra S, Muntoni AL, Lutz B, Gessa GL, Marsicano G, Di Marzo V, Pistis M (2006) Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol Dis 24:15–27

    PubMed  CAS  Google Scholar 

  • Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8:101–105. Review

    PubMed  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  • Muthian S, Rademacher DJ, Roelke CT, Gross GJ, Hillard CJ (2004) Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience 129:743–750

    PubMed  CAS  Google Scholar 

  • Myburgh JA, Cooper DJ, Finfer SR et al (2008) Epidemiology and 12-month outcomes from traumatic brain injury in Australia and New Zealand. J Trauma 64:854–862

    PubMed  Google Scholar 

  • Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K et al (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19:2987–2995

    PubMed  CAS  Google Scholar 

  • Nakajima H, Uchida K, Kobayashi S, Inukai T, Horiuchi Y, Yayama T, Sato R, Baba H (2007) Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene. J Neurotrauma 24:703–712

    PubMed  Google Scholar 

  • Neary JT (2005) Protein kinase signaling cascades in CNS trauma. IUBMB Life 57:711–718

    PubMed  CAS  Google Scholar 

  • Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247

    PubMed  CAS  Google Scholar 

  • Onaivi ES (2009) Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol 88:335–369. Review

    PubMed  CAS  Google Scholar 

  • Openheim A, Beit-Yannai E, Horowitz M, Shohami E (1996) Production of heat shock protein-72 in rat brain after closed head injury: study in heat acclimated and non acclimated. Isr J Med Sci 32:S38

    Google Scholar 

  • Ozaita A, Puighermanal E, Maldonado R (2007) Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 102:1105–1114

    PubMed  CAS  Google Scholar 

  • Pacher P, Hasko G (2008) Endocannabinoids and cannabinoid receptors in ischaemia reperfusion injury and preconditioning. Br J Pharmacol 153:252–262

    PubMed  CAS  Google Scholar 

  • Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    PubMed  CAS  Google Scholar 

  • Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25:477–484

    PubMed  CAS  Google Scholar 

  • Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A, Shohami E (2006) The endocannabinoid 2-AG protects the blood brain barrier after closed head injury and inhibits expression of proinflammatory cytokines. Neurobiol Dis 22:257–264

    PubMed  CAS  Google Scholar 

  • Paz Z, Freeman S, Horowitz M, Sohmer H (2004) Prior heat acclimation confers protection against noise-induced hearing loss. Audiol Neurootol 9:363–369

    PubMed  Google Scholar 

  • Perez Pinzon MA, Alonso O, Kraydieh S, Dietrich WD (1999) Induction of tolerance against traumatic brain injury by ischemic preconditioning. Neuroreport 10:2951–2954

    PubMed  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    PubMed  CAS  Google Scholar 

  • Schwimmer H, Eli-Berchoer L, Horowitz M (2006) Acclimatory-phase specificity of gene expression during the course of heat acclimation and superimposed hypohydration in the rat hypothalamus. J Appl Physiol 100:1992–2003

    PubMed  Google Scholar 

  • Selye H (1955) Stress and disease. Science 122:625–631

    PubMed  CAS  Google Scholar 

  • Sharma HS (2006) Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 96:329–334

    PubMed  CAS  Google Scholar 

  • Shein NA, Horowitz M, Alexandrovich A, Tsenter J, Shohami E (2005) Heat acclimation increases hypoxia inducible factor 1α and erythropoietin receptor expression: implication for neuroprotection after closed head injury in mice. J Cereb Blood Flow Metab 25:1456–1465

    PubMed  CAS  Google Scholar 

  • Shein NA, Horowitz M, Shohami E (2007a) Heat acclimation: a unique model of physiologically mediated global preconditioning against traumatic brain injury. Prog Brain Res 161:353–363

    PubMed  Google Scholar 

  • Shein NA, Tsenter J, Alexandrovich AG, Horowitz M, Shohami E (2007b) Akt phosphorylation is required for heat acclimation-induced neuroprotection. J Neurochem 103:1523–1529

    PubMed  CAS  Google Scholar 

  • Shein NA, Doron H, Horowitz M, Trembovler V, Alexandrovich AG, Shohami E (2007c) Altered cytokine expression and sustained hypothermia following traumatic brain injury in heat acclimated mice. Brain Res 1185:313–320

    PubMed  CAS  Google Scholar 

  • Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Spandou E, Tsenter J, Yatsiv I, Horowitz M, Shohami E (2008) Differential neuroprotective properties of endogenous and exogenous erythropoietin in a mouse model of traumatic brain injury. J Neurotrauma 25:112–123

    PubMed  Google Scholar 

  • Shen M, Thayer SA (1998) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 54:459–462

    PubMed  CAS  Google Scholar 

  • Shen M, Piser TM, Seybold VS, Thayer SA (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16:4322–4334

    PubMed  CAS  Google Scholar 

  • Shohami E, Novikov M, Horowitz M (1994a) Long term exposure to heat protects against brain damage induced by closed head injury in the rat. Restor Neurol Neurosci 6:107–112

    PubMed  CAS  Google Scholar 

  • Shohami E, Novikov M, Bass R, Yamin A, Gallily R (1994b) Closed head injury triggers early production of TNFα and IL-6 by brain tissue. J Cereb Blood Flow Metab 14:615–619

    PubMed  CAS  Google Scholar 

  • Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17:1007–1019

    PubMed  CAS  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    PubMed  CAS  Google Scholar 

  • Sinor AD, Irvin SM, Greenberg DA (2000) Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett 278:157–160

    PubMed  CAS  Google Scholar 

  • Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–4049

    PubMed  Google Scholar 

  • Sommerschild Hilchen T, Kirkeboen KA (2002) Preconditioning endogenous defense mechanisms of the heart. Acta Anaesthesiol Scand 46:123–137

    PubMed  CAS  Google Scholar 

  • Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030

    PubMed  Google Scholar 

  • Stenzel-Poore MP, Stevens SL, King JS, Simon RP (2007) Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 38:680–685

    PubMed  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K et al (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    PubMed  CAS  Google Scholar 

  • Szalay MS, Kovacs IA, KorcsmarosT BC, Csermely P (2007) Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett 581:3675–3680. Minireview

    PubMed  CAS  Google Scholar 

  • Tetievsky A, Horowitz M (2010) Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory. J Appl Physiol 109:1552–1561

    PubMed  CAS  Google Scholar 

  • Tetievsky A, Cohen O, Eli-Berchoer L, Gerstenblith G, Stern MD, Wapinski I, Friedman N, Horowitz M (2008) Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiol Genomics 34:78–87

    PubMed  CAS  Google Scholar 

  • Todgham AE, Schulte PM, Iwana GK (2005) Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol Biochem Zool 144:133–144

    Google Scholar 

  • Treinin M, Shliar J, Jiang H, Powell-Coffman JA, Bromberg Z, Horowitz M (2003) HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol Genomics 14:17–24

    PubMed  CAS  Google Scholar 

  • Umschweif G, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E (2011) Acriflavine reverses heat acclimation mediated neuroprotection by HIF1 inhibition. Society for Neuroscience Meeting, Washington, DC (abs)

    Google Scholar 

  • Umschwief G, Shein NA, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E (2010) Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. J Cereb Blood Flow Metab 30:616–627

    PubMed  Google Scholar 

  • van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bar PR, Veldink GA et al (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21:8765–8771

    PubMed  Google Scholar 

  • Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129: 1534–1545

    PubMed  CAS  Google Scholar 

  • Xi L, Tekin D, Bhargava P, Kukreja RC (2001) Whole body hyperthermia and preconditioning of the heart: basic concepts, complexity, and potential mechanisms. Int J Hyperthermia 17:439–455

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24:131–144. Review

    PubMed  CAS  Google Scholar 

  • Yatsiv I, Grigoriadis N, Simeonidou C, Stahel PF, Schmidt OI, Alexandrovitch AG, Tsenter J, Shohami E (2005) Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J 19:1701–1703

    PubMed  CAS  Google Scholar 

  • Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS (2005) Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 9:66–75

    PubMed  CAS  Google Scholar 

  • Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF (2007) Cannabinoid CB2 receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J Cereb Blood Flow Metab 27:1387–1396

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Shohami Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shohami, E., Horowitz, M. (2013). Intrinsic Neuroprotection in Traumatic Brain Injury. In: Gidday, J., Perez-Pinzon, M., Zhang, J. (eds) Innate Tolerance in the CNS. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9695-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9695-4_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9694-7

  • Online ISBN: 978-1-4419-9695-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics