Ischemic Preconditioning-Mediated Signaling Pathways Leading to Tolerance Against Cerebral Ischemia

  • Srinivasan Narayanan
  • Jake T. Neumann
  • Kahlilia C. Morris-Blanco
  • Miguel A. Perez-Pinzon
  • Hung Wen LinEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Cerebral ischemia, most notably in the form of stroke, is the leading cause of morbidity and mortality resulting in long-term disability in the USA. Approximately 800,000 strokes occur each year in the USA, and 87 % of all strokes in the world are caused by embolism, thrombosis, or systemic hemorrhage/hypoperfusion, all of which are a form of cerebral ischemia (Roger et al. 2011). The medical cost for the treatment of stroke in the USA was estimated to be $25 billion in 2007 (Roger et al. 2011). Due to this great burden, a fundamental understanding of cerebral ischemia and the inciting cellular dysfunction is imperative for the development of new therapies to combat this growing epidemic.


Reactive Oxygen Species Nitric Oxide Cerebral Ischemia Mitochondrial Membrane Potential Middle Cerebral Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andoh T, Lee SY, Chiueh CC (2000) Preconditioning regulation of bcl-2 and p66shc by human NOS1 enhances tolerance to oxidative stress. FASEB J 14:2144–2146PubMedGoogle Scholar
  2. Andoh T, Chock PB, Chiueh CC (2002) The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem 277:9655–9660PubMedCrossRefGoogle Scholar
  3. Andoh T, Chiueh CC, Chock PB (2003) Cyclic GMP-dependent protein kinase regulates the expression of thioredoxin and thioredoxin peroxidase-1 during hormesis in response to oxidative stress-induced apoptosis. J Biol Chem 278:885–890PubMedCrossRefGoogle Scholar
  4. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599PubMedCrossRefGoogle Scholar
  5. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271PubMedCrossRefGoogle Scholar
  6. Asai A, Tanahashi N, Qiu JH, Saito N, Chi S, Kawahara N, Tanaka K, Kirino T (2002) Selective proteasomal dysfunction in the hippocampal CA1 region after transient forebrain ischemia. J Cereb Blood Flow Metab 22:705–710PubMedCrossRefGoogle Scholar
  7. Azad N, Vallyathan V, Wang L, Tantishaiyakul V, Stehlik C, Leonard SS, Rojanasakul Y (2006) S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem 281:34124–34134PubMedCrossRefGoogle Scholar
  8. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M (2001) Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 276:1486–1493PubMedCrossRefGoogle Scholar
  9. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803PubMedCrossRefGoogle Scholar
  10. Bell KF, Al-Mubarak B, Fowler JH, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R, Chandran S, Horsburgh K, Hayes JD, Hardingham GE (2011) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci USA 108:E1–2; author reply E3–4CrossRefGoogle Scholar
  11. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  12. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48:285–296PubMedCrossRefGoogle Scholar
  13. Blanchard KL, Acquaviva AM, Galson DL, Bunn HF (1992) Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 12:5373–5385PubMedGoogle Scholar
  14. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3:e1759PubMedCrossRefGoogle Scholar
  15. Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972PubMedCrossRefGoogle Scholar
  16. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716PubMedGoogle Scholar
  17. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685PubMedCrossRefGoogle Scholar
  18. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770PubMedCrossRefGoogle Scholar
  19. Bronner M, Hertz R, Bar-Tana J (2004) Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase. Biochem J 384:295–305PubMedCrossRefGoogle Scholar
  20. Burda J, Hrehorovska M, Bonilla LG, Danielisova V, Cizkova D, Burda R, Nemethova M, Fando JL, Salinas M (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1213–1219PubMedCrossRefGoogle Scholar
  21. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634PubMedCrossRefGoogle Scholar
  22. Busto R, Ginsberg MD (1985) Graded focal cerebral ischemia in the rat by unilateral carotid artery occlusion and elevated intracranial pressure: hemodynamic and biochemical characterization. Stroke 16:466–476PubMedCrossRefGoogle Scholar
  23. Cai Z, Semenza GL (2005) PTEN activity is modulated during ischemia and reperfusion: involvement in the induction and decay of preconditioning. Circ Res 97:1351–1359PubMedCrossRefGoogle Scholar
  24. Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res 77:463–470PubMedCrossRefGoogle Scholar
  25. Calabrese V, Ravagna A, Colombrita C, Scapagnini G, Guagliano E, Calvani M, Butterfield DA, Giuffrida Stella AM (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79:509–521PubMedCrossRefGoogle Scholar
  26. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedCrossRefGoogle Scholar
  27. Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312:644–650PubMedCrossRefGoogle Scholar
  28. Carroll R, Gant VA, Yellon DM (2001) Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700PubMedCrossRefGoogle Scholar
  29. Centeno JM, Orti M, Salom JB, Sick TJ, Perez-Pinzon MA (1999) Nitric oxide is involved in anoxic preconditioning neuroprotection in rat hippocampal slices. Brain Res 836:62–69PubMedCrossRefGoogle Scholar
  30. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252PubMedCrossRefGoogle Scholar
  31. Chen J, Zhu RL, Nakayama M, Kawaguchi K, Jin K, Stetler RA, Simon RP, Graham SH (1996) Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 67:64–71PubMedCrossRefGoogle Scholar
  32. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW 2nd, Mochly-Rosen D (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 98:11114–11119PubMedCrossRefGoogle Scholar
  33. Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378:389–393PubMedCrossRefGoogle Scholar
  34. Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493–501PubMedCrossRefGoogle Scholar
  35. Churchill EN, Ferreira JC, Brum PC, Szweda LI, Mochly-Rosen D (2010) Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltaPKC during reperfusion. Cardiovasc Res 85:385–394PubMedCrossRefGoogle Scholar
  36. Colegrove SL, Albrecht MA, Friel DD (2000) Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+]i elevations. J Gen Physiol 115:371–388PubMedCrossRefGoogle Scholar
  37. Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals. J Biol Chem 276:26411–26420PubMedCrossRefGoogle Scholar
  38. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336PubMedCrossRefGoogle Scholar
  39. Dagani F, Erecinska M (1987) Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes. J Neurochem 49:1229–1240PubMedCrossRefGoogle Scholar
  40. Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA (2008) Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci 28:4172–4182PubMedCrossRefGoogle Scholar
  41. Dave KR, Anthony Defazio R, Raval AP, Dashkin O, Saul I, Iceman KE, Perez-Pinzon MA, Drew KL (2009) Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem 110:1170–1179PubMedCrossRefGoogle Scholar
  42. DeFazio RA, Raval AP, Lin HW, Dave KR, Della-Morte D, Perez-Pinzon MA (2009) GABA synapses mediate neuroprotection after ischemic and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab 29:375–384PubMedCrossRefGoogle Scholar
  43. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002PubMedCrossRefGoogle Scholar
  44. Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA (2011) Post-ischemic activation of protein kinase C epsilon protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett 487:158–162PubMedCrossRefGoogle Scholar
  45. Deshpande JK, Siesjo BK, Wieloch T (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:89–95PubMedCrossRefGoogle Scholar
  46. Dharap A, Vemuganti R (2010) Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem 113:1685–1691PubMedGoogle Scholar
  47. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293PubMedCrossRefGoogle Scholar
  48. Dixon EP, Stephenson DT, Clemens JA, Little SP (1997) Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res 776:222–229PubMedCrossRefGoogle Scholar
  49. Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264:20602–20607PubMedGoogle Scholar
  50. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887PubMedCrossRefGoogle Scholar
  51. Duquesnes N, Lezoualc’h F, Crozatier B (2011) PKC-delta and PKC-epsilon: Foes of the same family or strangers? J Mol Cell Cardiol 51(5):665–673PubMedCrossRefGoogle Scholar
  52. Durrant D, Liu J, Yang HS, Lee RM (2004) The bortezomib-induced mitochondrial damage is mediated by accumulation of active protein kinase C-delta. Biochem Biophys Res Commun 321:905–908PubMedCrossRefGoogle Scholar
  53. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840PubMedGoogle Scholar
  54. Eleff SM, Maruki Y, Monsein LH, Traystman RJ, Bryan RN, Koehler RC (1991) Sodium, ATP, and intracellular pH transients during reversible complete ischemia of dog cerebrum. Stroke 22:233–241PubMedCrossRefGoogle Scholar
  55. Englander EW, Hu Z, Sharma A, Lee HM, Wu ZH, Greeley GH (2002) Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria. J Neurochem 83:1471–1480PubMedCrossRefGoogle Scholar
  56. Favreau LV, Pickett CB (1991) Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem 266:4556–4561PubMedGoogle Scholar
  57. Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4:2587–2597PubMedGoogle Scholar
  58. Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol 278:H305–H312PubMedGoogle Scholar
  59. Fujiwara N, Higashi H, Shimoji K, Yoshimura M (1987) Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol 384:131–151PubMedGoogle Scholar
  60. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122PubMedCrossRefGoogle Scholar
  61. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673PubMedCrossRefGoogle Scholar
  62. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  63. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082PubMedCrossRefGoogle Scholar
  64. Garthwaite G, Garthwaite J (1986) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 66:193–198PubMedCrossRefGoogle Scholar
  65. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923PubMedCrossRefGoogle Scholar
  66. Ghosh TK, Bian JH, Short AD, Rybak SL, Gill DL (1991) Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. J Biol Chem 266:24690–24697PubMedGoogle Scholar
  67. Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM, Park TS (1999) Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19:331–340PubMedCrossRefGoogle Scholar
  68. Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155PubMedCrossRefGoogle Scholar
  69. Gonzalez-Zulueta M, Feldman AB, Klesse LJ, Kalb RG, Dillman JF, Parada LF, Dawson TM, Dawson VL (2000) Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci USA 97:436–441PubMedCrossRefGoogle Scholar
  70. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112PubMedCrossRefGoogle Scholar
  71. Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989) Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 251:98–104PubMedGoogle Scholar
  72. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA (2008) Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 28:2015–2024PubMedCrossRefGoogle Scholar
  73. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142PubMedCrossRefGoogle Scholar
  74. Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, Clarke K, Berge RK, Aasum E (2009) Cardiac peroxisome proliferator-activated receptor-alpha activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovasc Res 83:519–526PubMedCrossRefGoogle Scholar
  75. Hai S, Takemura S, Minamiyama Y, Yamasaki K, Yamamoto S, Kodai S, Tanaka S, Hirohashi K, Suehiro S (2005) Mitochondrial K(ATP) channel opener prevents ischemia-reperfusion injury in rat liver. Transplant Proc 37:428–431PubMedCrossRefGoogle Scholar
  76. Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA (2010) Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab 30:1825–1833PubMedCrossRefGoogle Scholar
  77. Han J, Kim N, Joo H, Kim E, Earm YE (2002) ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 283:H1545–H1554PubMedGoogle Scholar
  78. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274PubMedCrossRefGoogle Scholar
  79. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976PubMedCrossRefGoogle Scholar
  80. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH (2003) Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cereb Blood Flow Metab 23:949–961PubMedCrossRefGoogle Scholar
  81. Ho C, van der Veer E, Akawi O, Pickering JG (2009) SIRT1 markedly extends replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS Lett 583:3081–3085PubMedCrossRefGoogle Scholar
  82. Hoerter J, Gonzalez-Barroso MD, Couplan E, Mateo P, Gelly C, Cassard-Doulcier AM, Diolez P, Bouillaud F (2004) Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation 110:528–533PubMedCrossRefGoogle Scholar
  83. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576PubMedGoogle Scholar
  84. Hota KB, Hota SK, Chaurasia OP, Singh SB (2011) Acetyl-L-carnitine-mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22(4):723–736PubMedCrossRefGoogle Scholar
  85. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992PubMedCrossRefGoogle Scholar
  86. Hunter DR, Haworth RA (1979) The Ca2+−induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477PubMedCrossRefGoogle Scholar
  87. Inagaki K, Begley R, Ikeno F, Mochly-Rosen D (2005) Cardioprotection by epsilon-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation 111:44–50PubMedCrossRefGoogle Scholar
  88. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247PubMedCrossRefGoogle Scholar
  89. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650PubMedCrossRefGoogle Scholar
  90. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022PubMedCrossRefGoogle Scholar
  91. Janovska A, Hatzinikolas G, Staikopoulos V, McInerney J, Mano M, Wittert GA (2008) AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity. Mol Cell Endocrinol 284:1–10PubMedCrossRefGoogle Scholar
  92. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedCrossRefGoogle Scholar
  93. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709–720PubMedCrossRefGoogle Scholar
  94. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721PubMedCrossRefGoogle Scholar
  95. Kabir AM, Clark JE, Tanno M, Cao X, Hothersall JS, Dashnyam S, Gorog DA, Bellahcene M, Shattock MJ, Marber MS (2006) Cardioprotection initiated by reactive oxygen species is dependent on activation of PKC epsilon. Am J Physiol Heart Circ Physiol 291:H1893–H1899PubMedCrossRefGoogle Scholar
  96. Kass IS, Lipton P (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol 332:459–472PubMedGoogle Scholar
  97. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081PubMedCrossRefGoogle Scholar
  98. Kim HI, Cha JY, Kim SY, Kim JW, Roh KJ, Seong JK, Lee NT, Choi KY, Kim KS, Ahn YH (2002) Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes 51:676–685PubMedCrossRefGoogle Scholar
  99. Kim E, Raval AP, Defazio RA, Perez-Pinzon MA (2007) Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro. Neuroscience 145:931–941PubMedCrossRefGoogle Scholar
  100. Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA (2010) Ischemic preconditioning mediates cyclooxygenase-2 expression Via nuclear factor-kappa B activation in mixed cortical neuronal cultures. Transl Stroke Res 1:40–47PubMedCrossRefGoogle Scholar
  101. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32PubMedCrossRefGoogle Scholar
  102. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258PubMedGoogle Scholar
  103. Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 277:44327–44331PubMedCrossRefGoogle Scholar
  104. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–H657PubMedGoogle Scholar
  105. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464PubMedCrossRefGoogle Scholar
  106. Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2004) Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 24:636–645PubMedCrossRefGoogle Scholar
  107. Leblond J, Krnjevic K (1989) Hypoxic changes in hippocampal neurons. J Neurophysiol 62:1–14PubMedGoogle Scholar
  108. Lehman JJ, Boudina S, Banke NH, Sambandam N, Han X, Young DM, Leone TC, Gross RW, Lewandowski ED, Abel ED, Kelly DP (2008) The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol 295:H185–H196PubMedCrossRefGoogle Scholar
  109. Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O’Farrelly C, Rabb H, Taylor CT (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20:2624–2626PubMedCrossRefGoogle Scholar
  110. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241PubMedGoogle Scholar
  111. Li Y, Jaiswal AK (1992) Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 267:15097–15104PubMedGoogle Scholar
  112. Liu D, Lu C, Wan R, Auyeung WW, Mattson MP (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22:431–443PubMedCrossRefGoogle Scholar
  113. Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59PubMedCrossRefGoogle Scholar
  114. Liverman CS, Cui L, Yong C, Choudhuri R, Klein RM, Welch KM, Berman NE (2004) Response of the brain to oligemia: gene expression, c-Fos, and Nrf2 localization. Brain Res Mol Brain Res 126:57–66PubMedCrossRefGoogle Scholar
  115. Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, Vanden Hoek TL, Schumacker PT (2011) Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta 1813:1382–1394PubMedCrossRefGoogle Scholar
  116. Lotz C, Lazariotto M, Redel A, Smul TM, Stumpner J, Blomeyer C, Tischer-Zeitz T, Schmidt J, Pociej J, Roewer N, Kehl F, Lange M (2011) Activation of peroxisome-proliferator-activated receptors alpha and gamma mediates remote ischemic preconditioning against myocardial infarction in vivo. Exp Biol Med (Maywood) 236:113–122CrossRefGoogle Scholar
  117. Luo Y, Zhu W, Jia J, Zhang C, Xu Y (2009) NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury. J Mol Neurosci 39:262–268PubMedCrossRefGoogle Scholar
  118. Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, Simon RP, Saugstad JA (2010) Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 30:744–756PubMedCrossRefGoogle Scholar
  119. Majewski N, Nogueira V, Robey RB, Hay N (2004a) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24:730–740PubMedCrossRefGoogle Scholar
  120. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004b) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830PubMedCrossRefGoogle Scholar
  121. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–1446PubMedCrossRefGoogle Scholar
  122. Martins E, Inamura K, Themner K, Malmqvist KG, Siesjo BK (1988) Accumulation of calcium and loss of potassium in the hippocampus following transient cerebral ischemia: a proton microprobe study. J Cereb Blood Flow Metab 8:531–538PubMedCrossRefGoogle Scholar
  123. Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9:196–205PubMedCrossRefGoogle Scholar
  124. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedCrossRefGoogle Scholar
  125. Mayanagi K, Gaspar T, Katakam PV, Kis B, Busija DW (2007) The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27:348–355PubMedCrossRefGoogle Scholar
  126. McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF Jr, Sack MN (2004) Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 110:534–539PubMedCrossRefGoogle Scholar
  127. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A (1997) S-nitrosylation regulates apoptosis. Nature 388:432–433PubMedCrossRefGoogle Scholar
  128. Meng R, Pei Z, Zhang A, Zhou Y, Cai X, Chen B, Liu G, Mai W, Wei J, Dong Y (2011) AMPK activation enhances PPARalpha activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Arch Biochem Biophys 511:1–7PubMedCrossRefGoogle Scholar
  129. Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Burgel T, Jelkmann W, Acker H, Fandrey J (2003) Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 116:1319–1326PubMedCrossRefGoogle Scholar
  130. Milligan SA, Owens MW, Grisham MB (1998) Differential regulation of extracellular signal-regulated kinase and nuclear factor-kappa B signal transduction pathways by hydrogen peroxide and tumor necrosis factor. Arch Biochem Biophys 352:255–262PubMedCrossRefGoogle Scholar
  131. Miyawaki T, Mashiko T, Ofengeim D, Flannery RJ, Noh KM, Fujisawa S, Bonanni L, Bennett MV, Zukin RS, Jonas EA (2008) Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage, and large channel activity in mitochondria of postischemic hippocampal neurons. Proc Natl Acad Sci USA 105:4892–4897PubMedCrossRefGoogle Scholar
  132. Morikawa E, Rosenblatt S, Moskowitz MA (1992) L-arginine dilates rat pial arterioles by nitric oxide-dependent mechanisms and increases blood flow during focal cerebral ischaemia. Br J Pharmacol 107:905–907PubMedCrossRefGoogle Scholar
  133. Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898PubMedCrossRefGoogle Scholar
  134. Nadtochiy SM, Tompkins AJ, Brookes PS (2006) Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J 395:611–618PubMedCrossRefGoogle Scholar
  135. Nadtochiy SM, Burwell LS, Brookes PS (2007) Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 42:812–825PubMedCrossRefGoogle Scholar
  136. Nadtochiy SM, Redman E, Rahman I, Brookes PS (2011) Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res 89:643–649PubMedCrossRefGoogle Scholar
  137. Ng TL, Leprivier G, Robertson MD, Chow C, Martin MJ, Laderoute KR, Davicioni E, Triche TJ, Sorensen PH (2011) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ 19(3):501–510PubMedCrossRefGoogle Scholar
  138. Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474PubMedGoogle Scholar
  139. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174PubMedCrossRefGoogle Scholar
  140. Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A (2008) A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39:2578–2586PubMedCrossRefGoogle Scholar
  141. Nishijima MK, Koehler RC, Hurn PD, Eleff SM, Norris S, Jacobus WE, Traystman RJ (1989) Postischemic recovery rate of cerebral ATP, phosphocreatine, pH, and evoked potentials. Am J Physiol 257:H1860–H1870PubMedGoogle Scholar
  142. Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K (2004) Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res 61:610–619PubMedCrossRefGoogle Scholar
  143. Ohtaki H, Takeda T, Dohi K, Yofu S, Nakamachi T, Satoh K, Hiraizumi Y, Miyaoka H, Matsunaga M, Shioda S (2007) Increased mitochondrial DNA oxidative damage after transient middle cerebral artery occlusion in mice. Neurosci Res 58:349–355PubMedCrossRefGoogle Scholar
  144. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:H2123–H2134PubMedCrossRefGoogle Scholar
  145. Palacios M, Knowles RG, Palmer RM, Moncada S (1989) Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem Biophys Res Commun 165:802–809PubMedCrossRefGoogle Scholar
  146. Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101:7630–7635PubMedCrossRefGoogle Scholar
  147. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197PubMedCrossRefGoogle Scholar
  148. Paschen W, Doutheil J, Uto A, Gissel C (1996) Changes in endoplasmic reticulum Ca(2  −  )-ATPase mRNA levels in transient cerebral ischemia of rat: a quantitative polymerase chain reaction study. Neurosci Lett 217:41–44PubMedGoogle Scholar
  149. Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E, Rosello-Catafau J (2001) Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34:1164–1173PubMedCrossRefGoogle Scholar
  150. Philipson KA, Elder MG, White JO (1985) The effects of medroxyprogesterone acetate on enzyme activities in human endometrial carcinoma. J Steroid Biochem 23:1059–1064PubMedCrossRefGoogle Scholar
  151. Pialat JB, Cho TH, Beuf O, Joye E, Moucharrafie S, Langlois JB, Nemoz C, Janier M, Berthezene Y, Nighoghossian N, Desvergne B, Wiart M (2007) MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed 20:335–342PubMedCrossRefGoogle Scholar
  152. Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–331; discussion 332PubMedCrossRefGoogle Scholar
  153. Piot CA, Padmanaban D, Ursell PC, Sievers RE, Wolfe CL (1997) Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation 96:1598–1604PubMedCrossRefGoogle Scholar
  154. Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB (2004) Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J Neurosci 24:5611–5622PubMedCrossRefGoogle Scholar
  155. Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi AM (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1:827–837PubMedGoogle Scholar
  156. Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003) Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 23:384–391PubMedGoogle Scholar
  157. Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA (2007) epsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 1184:345–353PubMedCrossRefGoogle Scholar
  158. Ravati A, Ahlemeyer B, Becker A, Krieglstein J (2000) Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res 866:23–32PubMedCrossRefGoogle Scholar
  159. Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J (2001) Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J Neurochem 78:909–919PubMedCrossRefGoogle Scholar
  160. Reshef A, Sperling O, Zoref-Shani E (2000) The adenosine-induced mechanism for the acquisition of ischemic tolerance in primary rat neuronal cultures. Pharmacol Ther 87:151–159PubMedCrossRefGoogle Scholar
  161. Reynolds IJ (1999) Mitochondrial membrane potential and the permeability transition in excitotoxicity. Ann N Y Acad Sci 893:33–41PubMedCrossRefGoogle Scholar
  162. Richmond TS (1997) Cerebral resuscitation after global brain ischemia: linking research to practice. AACN Clin Issues 8:171–181PubMedCrossRefGoogle Scholar
  163. Roger VL et al (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209PubMedCrossRefGoogle Scholar
  164. Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891PubMedGoogle Scholar
  165. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503PubMedGoogle Scholar
  166. Santillo M, Mondola P, Seru R, Annella T, Cassano S, Ciullo I, Tecce MF, Iacomino G, Damiano S, Cuda G, Paterno R, Martignetti V, Mele E, Feliciello A, Avvedimento EV (2001) Opposing functions of Ki- and Ha-Ras genes in the regulation of redox signals. Curr Biol 11:614–619PubMedCrossRefGoogle Scholar
  167. Schmidt HH, Pollock JS, Nakane M, Forstermann U, Murad F (1992) Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium 13:427–434PubMedCrossRefGoogle Scholar
  168. Scorziello A, Santillo M, Adornetto A, Dell’aversano C, Sirabella R, Damiano S, Canzoniero LM, Renzo GF, Annunziato L (2007) NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem 103:1472–1480PubMedCrossRefGoogle Scholar
  169. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111PubMedCrossRefGoogle Scholar
  170. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102PubMedCrossRefGoogle Scholar
  171. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL (1993) Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci USA 90:4986–4990PubMedCrossRefGoogle Scholar
  172. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+−activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554PubMedCrossRefGoogle Scholar
  173. Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866PubMedCrossRefGoogle Scholar
  174. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959PubMedCrossRefGoogle Scholar
  175. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408PubMedCrossRefGoogle Scholar
  176. Strohm C, Barancik M, von Bruehl M, Strniskova M, Ullmann C, Zimmermann R, Schaper W (2002) Transcription inhibitor actinomycin-D abolishes the cardioprotective effect of ischemic reconditioning. Cardiovasc Res 55:602–618PubMedCrossRefGoogle Scholar
  177. Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446PubMedCrossRefGoogle Scholar
  178. Tanaka K, Iijima T, Mishima T, Suga K, Akagawa K, Iwao Y (2009) Ca(2+) buffering capacity of mitochondria after oxygen-glucose deprivation in hippocampal neurons. Neurochem Res 34:221–226PubMedCrossRefGoogle Scholar
  179. Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, Guo RX, Yu HM (2005) Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res 1057:57–64PubMedCrossRefGoogle Scholar
  180. Taylor CP, Weber ML, Gaughan CL, Lehning EJ, LoPachin RM (1999) Oxygen/glucose deprivation in hippocampal slices: altered intraneuronal elemental composition predicts structural and functional damage. J Neurosci 19:619–629PubMedGoogle Scholar
  181. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203PubMedGoogle Scholar
  182. Toime LJ, Brand MD (2010) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49:606–611PubMedCrossRefGoogle Scholar
  183. Tomasevic G, Shamloo M, Israeli D, Wieloch T (1999) Activation of p53 and its target genes p21(WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res 70:304–313PubMedCrossRefGoogle Scholar
  184. Um HC, Jang JH, Kim DH, Lee C, Surh YJ (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168PubMedCrossRefGoogle Scholar
  185. Vahtola E, Louhelainen M, Forsten H, Merasto S, Raivio J, Kaheinen P, Kyto V, Tikkanen I, Levijoki J, Mervaala E (2010) Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9:5PubMedCrossRefGoogle Scholar
  186. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637PubMedCrossRefGoogle Scholar
  187. Vazquez-Valls E, Flores-Soto ME, Chaparro-Huerta V, Torres-Mendoza BM, Gudino-Cabrera G, Rivera-Cervantes MC, Pallas M, Camins A, Armendariz-Borunda J, Beas-Zarate C (2011) HIF-1alpha expression in the hippocampus and peripheral macrophages after glutamate-induced excitotoxicity. J Neuroimmunol 238:12–18PubMedCrossRefGoogle Scholar
  188. Waldron RT, Short AD, Meadows JJ, Ghosh TK, Gill DL (1994) Endoplasmic reticulum calcium pump expression and control of cell growth. J Biol Chem 269:11927–11933PubMedGoogle Scholar
  189. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 97:2826–2831PubMedCrossRefGoogle Scholar
  190. Westermann B (2009) Nitric oxide links mitochondrial fission to Alzheimer’s disease. Sci Signal 2:pe29PubMedCrossRefGoogle Scholar
  191. Williamson JR, Steenbergen C, Deleeuw G, Barlow C (1976) Control of energy production in cardiac muscle: effects of ischemia in acidosis. Recent Adv Stud Cardiac Struct Metab 11:521–531PubMedGoogle Scholar
  192. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 282:194–199PubMedCrossRefGoogle Scholar
  193. Wu JS, Lin TN, Wu KK (2009a) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220:58–71PubMedCrossRefGoogle Scholar
  194. Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY, Shyue SK, Chen JJ, Chen YE, Maeda N, Wu KK, Lin TN (2009b) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14–3–3 epsilon upregulation. Circulation 119:1124–1134PubMedCrossRefGoogle Scholar
  195. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+− activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033PubMedCrossRefGoogle Scholar
  196. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519PubMedCrossRefGoogle Scholar
  197. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107PubMedCrossRefGoogle Scholar
  198. Yang CC, Lin LC, Wu MS, Chien CT, Lai MK (2009) Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Transplantation 88:1251–1260PubMedCrossRefGoogle Scholar
  199. Yin KJ, Deng Z, Hamblin M, Zhang J, Chen YE (2011) Vascular PPARdelta protects against stroke-induced brain injury. Arterioscler Thromb Vasc Biol 31:574–581PubMedCrossRefGoogle Scholar
  200. Zhang X, Gao R, Li J, Qi Y, Song X, Zhao L, Wang H, Pu Y, Xu K (2010) A pharmacological activator of AMP-activated protein kinase protects hypoxic neurons in a concentration-dependent manner. Neurochem Res 35:1281–1289PubMedCrossRefGoogle Scholar
  201. Zhang WL, Zhao YL, Liu XM, Chen J, Zhang D (2011a) Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning. Chin Med J (Engl) 124:2191–2195Google Scholar
  202. Zhang XL, Yan ZW, Sheng WW, Xiao J, Zhang ZX, Ye ZB (2011b) Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. Mol Cell Biochem 358:287–295PubMedCrossRefGoogle Scholar
  203. Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z, Grotta JC, Aronowski J (2009) Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 29:6186–6195PubMedCrossRefGoogle Scholar
  204. Zhou P, Qian L, Iadecola C (2005) Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 25:348–357PubMedCrossRefGoogle Scholar
  205. Zoratti M, Szabo I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26:543–553PubMedCrossRefGoogle Scholar
  206. Zuurbier CJ, Eerbeek O, Meijer AJ (2005) Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol 289:H496–H499PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Srinivasan Narayanan
    • 1
  • Jake T. Neumann
    • 1
  • Kahlilia C. Morris-Blanco
    • 1
  • Miguel A. Perez-Pinzon
    • 2
  • Hung Wen Lin
    • 1
    Email author
  1. 1.Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Cerebral Vascular Disease Research Laboratories, Neuroscience Program, Department of Neurology, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations