Preconditioning for SAH

  • Robert P. Ostrowski
  • John H. ZhangEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


This chapter summarizes both clinical and experimental conditioning modalities for subarachnoid hemorrhage (SAH), especially the types of conditioning for SAH, potential clinical applications and strategies, conditioning modalities for traumatic brain injury-induced SAH, mechanisms of conditioning-induced protection, selection for outcome measurement of conditioning effects, and ongoing clinical trials and future directions.


Conditioning Stimulus Cerebral Vasospasm Unruptured Aneurysm Hypoxic Precondition Early Brain Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn JY, Cho JH, Lee JW (2007) Distal lenticulostriate artery aneurysm in deep intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 78(12):1401–1403PubMedGoogle Scholar
  2. Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136PubMedGoogle Scholar
  3. Ali KM, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM (2011) Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis, Epub 2011 Feb 1
  4. Armin SS, Colohan AR, Zhang JH (2006) Traumatic subarachnoid hemorrhage: our current understanding and its evolution over the past half century. Neurol Res 28(4):445–452PubMedGoogle Scholar
  5. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48(3):285–296PubMedGoogle Scholar
  6. Bigdeli MR, Rasoulian B, Meratan AA (2009) In vivo normobaric hyperoxia preconditioning induces different degrees of antioxidant enzymes activities in rat brain tissue. Eur J Pharmacol 611(1–3):22–29PubMedGoogle Scholar
  7. Bowen KK, Naylor M, Vemuganti R (2006) Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia. Neurochem Int 49(2):127–135PubMedGoogle Scholar
  8. Brilstra EH, Rinkel GJ, van der Graaf Y, Sluzewski M, Groen RJ, Lo RT et al (2004) Quality of life after treatment of unruptured intracranial aneurysms by neurosurgical clipping or by embolisation with coils: A prospective, observational study. Cerebrovasc Dis 17(1):44–52PubMedGoogle Scholar
  9. Cahill J, Zhang JH (2009) Subarachnoid hemorrhage: is it time for a new direction? Stroke 40(3 Suppl):S86–S87PubMedGoogle Scholar
  10. Chan MT, Boet R, Ng SC, Poon WS, Gin T (2005) Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion. Acta Neurochir Suppl 95:93–96PubMedGoogle Scholar
  11. Chang CZ, Wu SC, Lin CL, Hwang SL, Howng SL, Kwan AL (2010) Atorvastatin preconditioning attenuates the production of endothelin-1 and prevents experimental vasospasm in rats. Acta Neurochir (Wien) 152(8):1399–1406Google Scholar
  12. Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523PubMedGoogle Scholar
  13. Da Dalt L, Marchi AG, Laudizi L, Crichiutti G, Messi G, Pavanello L et al (2006) Predictors of intracranial injuries in children after blunt head trauma. Eur J Pediatr 165(3):142–148PubMedGoogle Scholar
  14. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412PubMedGoogle Scholar
  15. Domoki F, Kis B, Gaspar T, Snipes JA, Parks JS, Bari F et al (2009) Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol Cell Physiol 296(1):C97–C105PubMedGoogle Scholar
  16. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF et al (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53(1):123–133PubMedGoogle Scholar
  17. Fergusen S, Macdonald RL (2007) Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 60(4):658–667PubMedGoogle Scholar
  18. Frietsch T, Kirsch JR (2004) Strategies of neuroprotection for intracranial aneurysms. Best Pract Res Clin Anaesthesiol 18(4):595–630PubMedGoogle Scholar
  19. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448PubMedGoogle Scholar
  20. Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE (2010) Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 1197:178–183PubMedGoogle Scholar
  21. Gong Y, Xi G, Hu H, Gu Y, Huang F, Keep RF et al (2008) Increase in brain thrombin activity after experimental intracerebral hemorrhage. Acta Neurochir Suppl 105:47–50PubMedGoogle Scholar
  22. Guan YS, Wang MQ (2008) Endovascular embolization of intracranial aneurysms. Angiology 59(3):342–351PubMedGoogle Scholar
  23. Halterman MW, Miller CC, Federoff HJ (1999) Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19(16):6818–6824PubMedGoogle Scholar
  24. Han RQ, Li SR, Wang BG, Wang EZ, Liu W, Wang S et al (2004) The effect of isoflurane induced hypotension on intraoperative cerebral vasospasm in intracranial aneurysm surgery. Zhonghua Yi Xue Za Zhi 84(4):286–289PubMedGoogle Scholar
  25. Harada N, Sakamoto S, Niwa Y, Nakaya Y (2001) Involvement of adenosine in vascular contractile preconditioning. Am J Physiol Heart Circ Physiol 280(6):H2911–H2919PubMedGoogle Scholar
  26. Harch PG, Fogarty EF, Staab PK, Van Meter K (2009) Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report. Cases J 2:6538PubMedGoogle Scholar
  27. Hu SL, Hu R, Li F, Liu Z, Xia YZ, Cui GY et al (2008) Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude. Acta Neurochir Suppl 105:191–196PubMedGoogle Scholar
  28. Hu H, Yamashita S, Song S, Hua Y, Keep RF, Xi G (2011) Thrombin preconditioning attenuates iron-induced neuronal death. Acta Neurochir Suppl 111:259–263PubMedGoogle Scholar
  29. Hua Y, Keep RF, Hoff JT, Xi G (2003) Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron. J Cereb Blood Flow Metab 23(12):1448–1454PubMedGoogle Scholar
  30. Hua Y, Wu J, Pecina S, Yang S, Schallert T, Keep RF et al (2005) Ischemic preconditioning procedure induces behavioral deficits in the absence of brain injury? Neurol Res 27(3):261–267PubMedGoogle Scholar
  31. Hunt MA, Bhardwaj A (2007) Caveats for triple-H therapy in the management of vasospasm after aneurysmal subarachnoid hemorrhage. Crit Care Med 35(8):1985–1986PubMedGoogle Scholar
  32. Jeon H, Ai J, Sabri M, Tariq A, Macdonald RL (2010) Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience 169(4):1805–1814PubMedGoogle Scholar
  33. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK et al (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33(7):1889–1898PubMedGoogle Scholar
  34. Keedy A (2006) An overview of intracranial aneurysms. Mcgill J Med 9(2):141–146PubMedGoogle Scholar
  35. Keep RF, Wang MM, Xiang J, Hua Y, Xi G (2010) Is there a place for cerebral preconditioning in the clinic? Transl Stroke Res 1(1):4–18PubMedGoogle Scholar
  36. Kheireddin AS, Filatov I, Belousova OB, Pilipenko I, Zolotukhin SP, Sazonov IA et al (2007) Intraoperative rupture of cerebral aneurysm – incidence and risk factors. Zh Vopr Neirokhir Im N N Burdenko 4:33–38PubMedGoogle Scholar
  37. Klune JR, Billiar TR, Tsung A (2008) HMGB1 preconditioning: therapeutic application for a danger signal? J Leukoc Biol 83(3):558–563PubMedGoogle Scholar
  38. Kocaogullar Y, Ustun ME, Avci E, Karabacakoglu A, Fossett D (2004) The role of hyperbaric oxygen in the management of subarachnoid hemorrhage. Intensive Care Med 30(1):141–146PubMedGoogle Scholar
  39. Koch S, Katsnelson M, Dong C, Perez-Pinzon M (2011) Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke 42(5):1387–1391PubMedGoogle Scholar
  40. Lavine SD, Masri LS, Levy ML, Giannotta SL (1997) Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg 87(6):817–824PubMedGoogle Scholar
  41. Li Q, Li J, Zhang L, Wang B, Xiong L (2007) Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci 80(12):1087–1093PubMedGoogle Scholar
  42. Li L, Peng L, Zuo Z (2008) Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586(1–3):106–113PubMedGoogle Scholar
  43. Liu J, Narasimhan P, Yu F, Chan PH (2005) Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36(6):1264–1269PubMedGoogle Scholar
  44. MacDonald E (1989) Aneurysmal subarachnoid hemorrhage. J Neurosci Nurs 21(5):313–321PubMedGoogle Scholar
  45. Matz PG, Weinstein PR, Sharp FR (1997) Heme oxygenase-1 and heat shock protein 70 induction in glia and neurons throughout rat brain after experimental intracerebral hemorrhage. Neurosurgery 40(1):152–160PubMedGoogle Scholar
  46. Megyesi JF, Vollrath B, Cook DA, Findlay JM (2000) In vivo animal models of cerebral vasospasm: a review. Neurosurgery 46(2):448–460PubMedGoogle Scholar
  47. Meyer FB, Muzzi DA (1992) Cerebral protection during aneurysm surgery with isoflurane anesthesia. Technical note. J Neurosurg 76(3):541–543PubMedGoogle Scholar
  48. Meyer R, Deem S, Yanez ND, Souter M, Lam A, Treggiari MM (2011) Current practices of triple-H prophylaxis and therapy in patients with subarachnoid hemorrhage. Neurocrit Care 14(1):24–36PubMedGoogle Scholar
  49. Miyawaki T, Mashiko T, Ofengeim D, Flannery RJ, Noh KM, Fujisawa S et al (2008) Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage, and large channel activity in mitochondria of postischemic hippocampal neurons. Proc Natl Acad Sci USA 105(12):4892–4897PubMedGoogle Scholar
  50. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA et al (2005) International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366(9488):809–817PubMedGoogle Scholar
  51. Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S et al (2009) High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care 11(3):362–368PubMedGoogle Scholar
  52. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247PubMedGoogle Scholar
  53. Okten AI, Gezercan Y, Ergun R (2006) Traumatic subarachnoid hemorrhage: a prospective study of 58 cases. Ulus Travma Acil Cerrahi Derg 12(2):107–114PubMedGoogle Scholar
  54. Ostrowski RP, Zhang JH (2011) Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2:316–327Google Scholar
  55. Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5):554–571PubMedGoogle Scholar
  56. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28(4):399–414PubMedGoogle Scholar
  57. Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N et al (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29(1):1–13PubMedGoogle Scholar
  58. Ostrowski RP, Jadhav V, Chen W, Zhang JH (2010) Reduced matrix metalloproteinase-9 activity and cell death after global ischemia in the brain preconditioned with hyperbaric oxygen. Acta Neurochir Suppl 106:47–49PubMedGoogle Scholar
  59. Park MK, Kang YJ, Lee HS, Kim HJ, Seo HG, Lee JH et al (2008) The obligatory role of COX-2 expression for induction of HO-1 in ischemic preconditioned rat brain. Biochem Biophys Res Commun 377(4):1191–1194PubMedGoogle Scholar
  60. Peart JN, Gross ER, Gross GJ (2005) Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 42(5–6):211–218PubMedGoogle Scholar
  61. Pickett W, Simpson K, Brison RJ (2004) Rates and external causes of blunt head trauma in Ontario: analysis and review of Ontario Trauma Registry datasets. Chronic Dis Can 25(1):32–41PubMedGoogle Scholar
  62. Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, Xiong Z et al (2008) In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab 28(2):232–241PubMedGoogle Scholar
  63. Ping A, Chun ZX, Xue XY (2005) Bradykinin preconditioning induces protective effects against focal cerebral ischemia in rats. Brain Res 1059(2):105–112PubMedGoogle Scholar
  64. Piotin M, Mounayer C, Spelle L, Williams MT, Moret J (2004) Endovascular treatment of anterior choroidal artery aneurysms. AJNR Am J Neuroradiol 25(2):314–318PubMedGoogle Scholar
  65. Pluta RM, Oldfield EH (2007) Analysis of nitric oxide (NO) in cerebral vasospasm after aneurysmal bleeding. Rev Recent Clin Trials 2(1):59–67PubMedGoogle Scholar
  66. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31(2):151–158PubMedGoogle Scholar
  67. Ratan RR, Siddiq A, Aminova L, Lange PS, Langley B, Ayoub I et al (2004) Translation of ischemic preconditioning to the patient: prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35(11 Suppl 1):2687–2689PubMedGoogle Scholar
  68. Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ et al (2010) Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na  +  and K  +  ion channels. J Biol Chem 285(6):4130–4142PubMedGoogle Scholar
  69. Regli L, Dehdashti AR, Uske A, de Tribolet N (2002) Endovascular coiling compared with surgical clipping for the treatment of unruptured middle cerebral artery aneurysms: an update. Acta Neurochir Suppl 82:41–46PubMedGoogle Scholar
  70. Rehni AK, Singh N, Jaggi AS (2007) Possible involvement of insulin, endogenous opioids and calcitonin gene-related peptide in remote ischaemic preconditioning of the brain. Yakugaku Zasshi 127(6):1013–1020PubMedGoogle Scholar
  71. Ren C, Gao X, Steinberg GK, Zhao H (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151(4):1099–1103PubMedGoogle Scholar
  72. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H (2009) Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res 1288:88–94PubMedGoogle Scholar
  73. Rigamonti A, Ackery A, Baker AJ (2008) Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care. Can J Anaesth 55(2):112–123PubMedGoogle Scholar
  74. Sancak T, Silav G, Egemen N, Aldur M (2002) Subarachnoid haemorrhage-induced chronic cerebral vasospasm in the rabbit: IV-DSA versus IA-DSA. Acta Neurochir (Wien) 144(9):929–931Google Scholar
  75. Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE (2010) Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 25(1):127–134PubMedGoogle Scholar
  76. Scharbrodt W, Stein M, Schreiber V, Boker DK, Oertel MF (2009) The prediction of long-term outcome after subarachnoid hemorrhage as measured by the Short Form-36 Health Survey. J Clin Neurosci 16(11):1409–1413PubMedGoogle Scholar
  77. Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD (2004) Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Res 1001(1–2):133–142PubMedGoogle Scholar
  78. Semenza GL (2001) Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49(5):614–617PubMedGoogle Scholar
  79. Sercombe R, Dinh YR, Gomis P (2002) Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88(3):227–249PubMedGoogle Scholar
  80. Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G (2007) Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res 85(8):1647–1655PubMedGoogle Scholar
  81. Sharp FR, Bergeron M, Bernaudin M (2001) Hypoxia-inducible factor in brain. Adv Exp Med Biol 502:273–291PubMedGoogle Scholar
  82. Short JG, Fujiwara NH, Marx WF, Helm GA, Cloft HJ, Kallmes DF (2001) Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. AJNR Am J Neuroradiol 22(10):1833–1837PubMedGoogle Scholar
  83. Stenzel-Poore MP, Stevens SL, Simon RP (2004) Genomics of preconditioning. Stroke 35(11 Suppl 1):2683–2686PubMedGoogle Scholar
  84. Stowe AM, Altay T, Freie AB, Gidday JM (2011) Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol 69(6):975–985PubMedGoogle Scholar
  85. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH (2009) Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke 40(4):1530–1532PubMedGoogle Scholar
  86. Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, Sun H et al (1999) Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest 104(1):59–66PubMedGoogle Scholar
  87. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26(8):1089–1102PubMedGoogle Scholar
  88. Tapuria N, Kumar Y, Habib MM, Abu AM, Seifalian AM, Davidson BR (2008) Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury–a review. J Surg Res 150(2):304–330PubMedGoogle Scholar
  89. Taylor CJ, Robertson F, Brealey D, O’shea F, Stephen T, Brew S et al (2011) Outcome in poor grade subarachnoid hemorrhage patients treated with acute endovascular coiling of aneurysms and aggressive intensive care. Neurocrit Care 14(3):341–347PubMedGoogle Scholar
  90. Thom SR (2009) Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 106(3):988–995PubMedGoogle Scholar
  91. Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG (2006) Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 290(4):H1378–H1386PubMedGoogle Scholar
  92. Titova E, Ostrowski RP, Zhang JH, Tang J (2009) Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 31(6):568–581PubMedGoogle Scholar
  93. van der Jagt M, Hasan D, Dippel DW, van Dijk EJ, Avezaat CJ, Koudstaal PJ (2009) Impact of early surgery after aneurysmal subarachnoid haemorrhage. Acta Neurol Scand 119(2):100–106PubMedGoogle Scholar
  94. van Gijn J, Rinkel GJ (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(Pt 2):249–278PubMedGoogle Scholar
  95. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM et al (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42(3):776–782PubMedGoogle Scholar
  96. Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K (2001) Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery 49(1):160–166PubMedGoogle Scholar
  97. Walid SM, Zaytseva NV (2009) Quadruple H therapy for vasospasm. Ann Indian Acad Neurol 12:22–24PubMedGoogle Scholar
  98. Wang H, Yu X, Xu G, Xu G, Gao G, Xu X (2011) Alcoholism and traumatic subarachnoid hemorrhage: an experimental study on vascular morphology and biomechanics. J Trauma 70(1):E6–E12PubMedGoogle Scholar
  99. Wartenberg KE (2011) Critical care of poor-grade subarachnoid hemorrhage. Curr Opin Crit Care 17(2):85–93PubMedGoogle Scholar
  100. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT (1999) Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke 30(6):1247–1255PubMedGoogle Scholar
  101. Xi G, Keep RF, Hua Y, Hoff JT (2000) Thrombin preconditioning, heat shock proteins and thrombin-induced brain edema. Acta Neurochir Suppl 76:511–515PubMedGoogle Scholar
  102. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X et al (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 96:233–7, tablePubMedGoogle Scholar
  103. Yan JH, Yang XM, Chen CH, Hu Q, Zhao J, Shi XZ et al (2008) Pifithrin-alpha reduces cerebral vasospasm by attenuating apoptosis of endothelial cells in a subarachnoid haemorrhage model of rat. Chin Med J (Engl) 121(5):414–419Google Scholar
  104. Yatsushige H, Yamaguchi M, Zhou C, Calvert JW, Zhang JH (2005) Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 36(7):1538–1543PubMedGoogle Scholar
  105. Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan AR et al (2008) Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochir Suppl 104:27–31PubMedGoogle Scholar
  106. Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ et al (2007) Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 38(3):1017–1024PubMedGoogle Scholar
  107. Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29(5):873–885PubMedGoogle Scholar
  108. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW et al (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286PubMedGoogle Scholar
  109. Zhou C, Yamaguchi M, Colohan AR, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5):572–582PubMedGoogle Scholar
  110. Zhou Y, Lekic T, Fathali N, Ostrowski RP, Martin RD, Tang J et al (2010) Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke 41(7):1521–1527PubMedGoogle Scholar
  111. Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD et al (2011) Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke 42(2):439–444PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology & PharmacologyLoma Linda University School of MedicineLoma LindaUSA
  2. 2.Loma Linda UniversityLoma LindaUSA

Personalised recommendations