Advertisement

Oded Schramm’s contributions to Noise Sensitivity

  • Christophe Garban*
Open Access
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

We survey in this paper the main contributions of Oded Schramm related to Noise Sensitivity. We will describe in particular his various works which focused on the “Spectral analysis” of critical percolation (and more generally of Boolean functions), his work on the shape-fluctuations of first passage percolation and finally his contributions to the model of dynamical percolation.

Keywords

Boolean Function Triangular Lattice Noise Sensitivity Infinite Cluster Critical Percolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BR08]
    Michel Benaïm and Raphaël Rossignol. Exponential concentration for first passage percolation through modified Poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat., 44(3):544–573, 2008.MATHCrossRefGoogle Scholar
  2. [BKS99]
    Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math., (90):5–43 (2001), 1999.Google Scholar
  3. [BKS03]
    Itai Benjamini, Gil Kalai, and Oded Schramm. First passage percolation has sublinear distance variance. Ann. Probab., 31(4):1970–1978, 2003.MathSciNetMATHCrossRefGoogle Scholar
  4. [BS98a]
    Itai Benjamini and Oded Schramm. Conformal invariance of Voronoi percolation. Comm. Math. Phys., 197(1):75–107, 1998.MathSciNetMATHCrossRefGoogle Scholar
  5. [BS98b]
    Itai Benjamini and Oded Schramm. Exceptional planes of percolation. Probab. Theory Related Fields, 111(4):551–564, 1998.MathSciNetMATHCrossRefGoogle Scholar
  6. [BSW05]
    Itai Benjamini, Oded Schramm, and David B. Wilson. Balanced Boolean functions that can be evaluated so that every input bit is unlikely to be read. In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 244–250. ACM, New York, 2005.Google Scholar
  7. [BOL87]
    M. Ben-Or and N. Linial. Collective coin flipping. Randomness and Computation (S. Micali, ed.), 1987.Google Scholar
  8. [BKK+92]
    Jean Bourgain, Jeff Kahn, Gil Kalai, Yitzhak Katznelson, and Nathan Linial. The influence of variables in product spaces. Israel J. Math., 77(1-2):55–64, 1992.MathSciNetMATHCrossRefGoogle Scholar
  9. [Car92]
    John Cardy. Critical percolation in finite geometries. J. Phys. A, 25(4):L201–L206, 1992.MATHCrossRefGoogle Scholar
  10. [Cha08]
    Sourav Chatterjee. Chaos, Concentration, and Multiple Valleys. preprint, 2008.Google Scholar
  11. [FK96]
    Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124(10):2993–3002, 1996.MathSciNetMATHCrossRefGoogle Scholar
  12. [GPS10]
    Christophe Garban, Gábor Pete, and Oded Schramm. The Fourier spectrum of critical percolation. Acta Math., to appear, 2010.Google Scholar
  13. [Gri99]
    Geoffrey Grimmett. Percolation. Grundlehren der mathematischen Wissenschaften 321. Springer-Verlag, Berlin, second edition, 1999.Google Scholar
  14. [Gri08]
    Geoffrey Grimmett. Probability On Graphs. 2008.Google Scholar
  15. [Gro75]
    Leonard Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.MathSciNetCrossRefGoogle Scholar
  16. [HPS97]
    Olle Häggström, Yuval Peres, and Jeffrey E. Steif. Dynamical percolation. Ann. Inst. H. Poincaré Probab. Statist., 33(4):497–528, 1997.MATHCrossRefGoogle Scholar
  17. [HS90]
    Takashi Hara and Gordon Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys., 128(2):333–391, 1990.MathSciNetMATHCrossRefGoogle Scholar
  18. [Joh00]
    Kurt Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000.MathSciNetMATHCrossRefGoogle Scholar
  19. [KKL88]
    Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions. 29th Annual Symposium on Foundations of Computer Science, (68–80), 1988.Google Scholar
  20. [KS06]
    Gil Kalai and Shmuel Safra. Threshold phenomena and influence: perspectives from mathematics, computer science, and economics. In Computational complexity and statistical physics, St. Fe Inst. Stud. Sci. Complex., pages 25–60. Oxford Univ. Press, New York, 2006.Google Scholar
  21. [Kes87]
    Harry Kesten. Scaling relations for 2D-percolation. Comm. Math. Phys., 109(1):109–156, 1987.MathSciNetMATHCrossRefGoogle Scholar
  22. [KZ87]
    Harry Kesten and Yu Zhang. Strict inequalities for some critical exponents in two-dimensional percolation. J. Statist. Phys., 46(5–6):1031–1055, 1987.MathSciNetMATHGoogle Scholar
  23. [LPSA94]
    Robert Langlands, Philippe Pouliot, and Yvan Saint-Aubin. Conformal invariance in two-dimensional percolation. Bull. Amer. Math. Soc. (N.S.), 30(1):1–61, 1994.MathSciNetMATHCrossRefGoogle Scholar
  24. [LSW02]
    Gregory F. Lawler, Oded Schramm, and Wendelin Werner. One-arm exponent for critical 2D percolation. Electron. J. Probab., 7:no. 2, 13 pp. (electronic), 2002.MathSciNetGoogle Scholar
  25. [Mar74]
    G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy Peredači Informacii, 10(2):101–108, 1974.MathSciNetMATHGoogle Scholar
  26. [MR96]
    Ronald Meester and Rahul Roy. Continuum percolation, volume 119 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.Google Scholar
  27. [MOO05]
    Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. Math., to appear, 2005.Google Scholar
  28. [Nel66]
    Edward Nelson. A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), pages 69–73. M.I.T. Press, Cambridge, Mass., 1966.Google Scholar
  29. [No109]
    Pierre Nolin. Near-critical percolation in two dimensions. Electron. J. Probab., 13(55):1562–1623, 2009.Google Scholar
  30. [O’D]
    Ryan O’Donnell. History of the hypercontractivity theorem. http://boolean-analysis.blogspot.com/.
  31. [O’D03]
    Ryan O’Donnell. Computational Applications Of Noise Sensitivity. PhD thesis, M.I.T., 2003.Google Scholar
  32. [OS07]
    Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in polynomial time. SIAM J. Comput., 37(3):827–844 (electronic), 2007.MathSciNetMATHCrossRefGoogle Scholar
  33. [OSSS05]
    Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco Servedio. Every decision tree has an influential variable. FOCS, 2005.Google Scholar
  34. [PSSW07]
    Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson. Random-turn hex and other selection games. Amer. Math. Monthly, 114(5):373–387, 2007.MathSciNetMATHGoogle Scholar
  35. [Rus78]
    Lucio Russo. A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43(1):39–48, 1978.MathSciNetMATHCrossRefGoogle Scholar
  36. [Rus82]
    Lucio Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete, 61(1):129–139, 1982.MathSciNetMATHCrossRefGoogle Scholar
  37. [Sch00]
    Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.MathSciNetMATHCrossRefGoogle Scholar
  38. [Sch07]
    Oded Schramm. Conformally invariant scaling limits: an overview and a collection of problems. In International Congress of Mathematicians. Vol. I, pages 513–543. Eur. Math. Soc., Zürich, 2007.Google Scholar
  39. [SS10a]
    Oded Schramm and Stanislav Smirnov. On the scaling limits of planar percolation. Ann. Probab., to appear, 2010.Google Scholar
  40. [SS10b]
    Oded Schramm and Jeffrey Steif. Quantitative noise sensitivity and exceptional times for percolation. Ann. Math., 171(2):619–672, 2010.MATHCrossRefGoogle Scholar
  41. [Smi01]
    Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.MATHGoogle Scholar
  42. [SW01]
    Stanislav Smirnov and Wendelin Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729–744, 2001.MathSciNetMATHGoogle Scholar
  43. [Ste09]
    Jeffrey Steif. A survey of dynamical percolation. Fractal geometry and stochastics, IV, Birkhauser, pages 145–174, 2009.Google Scholar
  44. [Tal94]
    Michel Talagrand. On Russo’s approximate zero-one law. Ann. Probab., 22(3):1576–1587, 1994.MathSciNetMATHCrossRefGoogle Scholar
  45. [Tal95]
    Michel Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., (81):73–205, 1995.Google Scholar
  46. [Tal96]
    Michel Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–258, 1996.MathSciNetMATHCrossRefGoogle Scholar
  47. [Tsi99]
    Boris Tsirelson. Fourier-Walsh coefficients for a coalescing flow (discrete time). 1999.Google Scholar
  48. [Tsi04]
    Boris Tsirelson. Scaling limit, noise, stability. In Lectures on probability theory and statistics, volume 1840 of Lecture Notes in Math., pages 1–106. Springer, Berlin, 2004.Google Scholar
  49. [TV98]
    B. S. Tsirelson and A. M. Vershik. Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations. Rev. Math. Phys., 10(1):81–145, 1998.MathSciNetMATHCrossRefGoogle Scholar
  50. [Wer07]
    Wendelin Werner. Lectures on two-dimensional critical percolation. IAS Park City Graduate Summer School, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christophe Garban*
    • 1
  1. 1.UMPA, CNRS UMR 5669, ENS LyonLyonFrance

Personalised recommendations