Skip to main content

Mapping and Immunomodulation of the Cell Surface Protein Architecture with Therapeutic Implications: Fluorescence Is a Key Tool of Solution

  • Chapter
  • First Online:
Reviews in Fluorescence 2009

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2009))

Abstract

Understanding the molecular mechanisms of cell-to-cell communication is one of the major challenges in today’s biology, especially in the immune and nervous systems, where such communication leads to immediate effector functions, as well as to storage of memory [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelman GM (1993) Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron 10:115–125

    Article  PubMed  CAS  Google Scholar 

  2. Shaw AS, Allen PM (2001) Kissing cousins: immunological and neurological synapses. Nat Immunol 2:575–576

    Article  PubMed  CAS  Google Scholar 

  3. Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298:785–789

    Article  PubMed  CAS  Google Scholar 

  4. Trautmann A (2005) Microclusters initiate and sustain T cell signaling. Nat Immunol 6:1213–1214

    Article  PubMed  CAS  Google Scholar 

  5. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  6. Matkó J, Szöllősi J (2005) Membrane microdomain signaling. Lipid rafts. In: Mattson MP (ed) Biology and medicine. Humana, Totowa, NJ, pp 15–46

    Google Scholar 

  7. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723

    Article  PubMed  CAS  Google Scholar 

  8. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  PubMed  CAS  Google Scholar 

  9. Fantini J (2007) Interaction of proteins with lipid rafts through glycolipid-binding domains: biochemical background and potential therapeutic applications. Curr Med Chem 14:2911–2917

    Article  PubMed  CAS  Google Scholar 

  10. Taylor DR, Hooper NM (2007) Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-β proteins. Semin Cell Dev Biol 18:638–648

    Article  PubMed  CAS  Google Scholar 

  11. Jolly C, Sattentau QJ (2005) Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity. J Virol 79:12088–12094

    Article  PubMed  CAS  Google Scholar 

  12. Feldner JC, Brandt BH (2002) Cancer cell motility-on the road from c-ErbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108

    Article  PubMed  CAS  Google Scholar 

  13. Shawver LK, Slamon D, Ullrich A (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1:117–123

    Article  PubMed  CAS  Google Scholar 

  14. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328

    Article  PubMed  CAS  Google Scholar 

  15. Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, Lidke DS (2008) Actin restricts FceRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10:955–963

    Article  PubMed  CAS  Google Scholar 

  16. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783–787. doi:10.1038/nature08827

    Article  PubMed  CAS  Google Scholar 

  17. Szabó Á, Horváth G, Szöllősi J, Nagy P (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95:2086–2096

    Article  PubMed  CAS  Google Scholar 

  18. Nagy P, Jenei A, Kirsch AK, Szöllősi J, Damjanovich S, Jovin TM (1999) Activation-dependent clustering of the ErbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci 112:1733–1741

    PubMed  CAS  Google Scholar 

  19. Citri A, Yarden Y (2006) EGF-ErbB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  PubMed  CAS  Google Scholar 

  20. Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232:123–138

    Article  PubMed  CAS  Google Scholar 

  21. Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2:77–83

    Article  PubMed  Google Scholar 

  22. Filpula D (2007) Antibody engineering and modification technologies. Biomol Eng 24:201–215

    Article  PubMed  CAS  Google Scholar 

  23. Alguel Y, Leung J, Singh S, Rana R, Civiero L, Alves C, Byrne B (2010) New tools for membrane protein research. Curr Protein Pept Sci 11:156–165

    Article  PubMed  CAS  Google Scholar 

  24. Magliery TJ, Regan L (2006) Reassembled GFP: detecting protein-protein interactions and protein expression patterns. Methods Biochem Anal 47:391–405

    PubMed  Google Scholar 

  25. Miyawaki A, Nagai T, Mizuno H (2005) Engineering fluorescent proteins. Adv Biochem Eng Biotechnol 95:1–15

    PubMed  CAS  Google Scholar 

  26. Kampani K, Quann K, Ahuja J, Wigdahl B, Khan ZK, Jain P (2007) A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment. J Virol Methods 141:125–132

    Article  PubMed  CAS  Google Scholar 

  27. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  PubMed  CAS  Google Scholar 

  28. Herbst KJ, Ni Q, Zhang J (2009) Dynamic visualization of signal transduction in living cells: from second messengers to kinases. IUBMB Life 61:902–908

    Article  PubMed  CAS  Google Scholar 

  29. Chan FK (2004) Monitoring molecular interactions in living cells using flow cytometric analysis of fluorescence resonance energy transfer. Methods Mol Biol 261:371–382

    PubMed  CAS  Google Scholar 

  30. Witternberg NJ, Haynes CL (2009) Using nanoparticles to push the limits of detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:237–254

    Article  Google Scholar 

  31. Kalab P, Pralle A (2008) Chapter 21: quantitative fluorescence lifetime imaging in cells as a tool to design computational models of ran-regulated reaction networks. Methods Cell Biol 89:541–568

    Article  PubMed  CAS  Google Scholar 

  32. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  PubMed  CAS  Google Scholar 

  33. Stockl M, Plazzo AP, Korte T, Herrmann A (2008) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. J Biol Chem 283:30828–30837

    Article  PubMed  CAS  Google Scholar 

  34. Stockl MT, Herrmann A (2010) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim Biophys Acta 1798(7):1444–1456

    Article  PubMed  CAS  Google Scholar 

  35. Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 25:301–327

    Article  PubMed  CAS  Google Scholar 

  36. de Almeida RF, Loura LM, Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157:61–77

    Article  PubMed  CAS  Google Scholar 

  37. Vereb G, Szöllősi J, Damjanovich S, Matkó J (2004) Exploring membrane microdomains and functional protein clustering in live cells with flow and image cytometric methods. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence. Kluwer/Plenum, New York, pp 99–120

    Google Scholar 

  38. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  39. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21:430–439

    Article  CAS  Google Scholar 

  40. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  41. Nagy P, Vereb G, Sebestyén Z, Horváth G, Lockett SJ, Damjanovich S, Park JW, Jovin TM, Szöllősi J (2002) Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2. J Cell Sci 115:4251–4262

    Article  PubMed  CAS  Google Scholar 

  42. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  PubMed  CAS  Google Scholar 

  43. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  44. Bíró A, Cervenak L, Balogh A, Lorincz A, Uray K, Horváth A, Romics L, Matkó J, Fust G, László G (2007) Novel anti-cholesterol monoclonal immunoglobulin G antibodies as probes and potential modulators of membrane raft-dependent immune functions. J Lipid Res 48:19–29

    PubMed  Google Scholar 

  45. Gombos I, Steinbach G, Pomozi I, Balogh A, Vámosi G, Gansen A, László G, Garab G, Matkó J (2008) Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytom A 73:220–229

    Article  CAS  Google Scholar 

  46. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  PubMed  CAS  Google Scholar 

  47. Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  PubMed  CAS  Google Scholar 

  48. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559

    Article  PubMed  CAS  Google Scholar 

  49. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  PubMed  CAS  Google Scholar 

  50. Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10:409–416

    Article  PubMed  CAS  Google Scholar 

  51. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  52. Nagy P, Vámosi G, Bodnár A, Lockett SJ, Szöllősi J (1998) Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J 27:377–389

    Article  PubMed  CAS  Google Scholar 

  53. Vereb G, Matkó J, Szöllősi J (2004) Cytometry of fluorescence resonance energy transfer. Methods Cell Biol 75:105–152

    Article  PubMed  CAS  Google Scholar 

  54. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251

    Article  PubMed  CAS  Google Scholar 

  55. Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82:274–284

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680

    Article  PubMed  CAS  Google Scholar 

  57. Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA 98:10642–10647

    Article  PubMed  CAS  Google Scholar 

  58. Schutz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  PubMed  CAS  Google Scholar 

  59. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278:28109–28115

    Article  PubMed  CAS  Google Scholar 

  60. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys J 85:3758–3768

    Article  PubMed  CAS  Google Scholar 

  61. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043

    Article  PubMed  CAS  Google Scholar 

  62. Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllősi J, Jenei A, Gáspár R Jr, Waldmann TA, Damjanovich S (2000) Cholesterol-dependent clustering of IL-2Rα and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 97:6013–6018

    Article  PubMed  CAS  Google Scholar 

  63. Matkó J, Bodnar A, Vereb G, Bene L, Vámosi G, Szentesi G, Szöllősi J, Gáspár R, Horejsi V, Waldmann TA, Damjanovich S (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 269:1199–1208

    Article  PubMed  Google Scholar 

  64. Pralle A, Keller P, Florin EL, Simons K, Horber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008

    Article  PubMed  CAS  Google Scholar 

  65. Manes S, del Real G, Martinez AC (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568

    Article  PubMed  CAS  Google Scholar 

  66. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  PubMed  CAS  Google Scholar 

  67. Carrasco M, Amorim MJ, Digard P (2004) Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. Traffic 5:979–992

    Article  PubMed  CAS  Google Scholar 

  68. Wilflingseder D, Stoiber H (2007) Float on: lipid rafts in the lifecycle of HIV. Front Biosci 12:2124–2135

    Article  PubMed  CAS  Google Scholar 

  69. Hambleton S, Steinberg SP, Gershon MD, Gershon AA (2007) Cholesterol dependence of varicella-zoster virion entry into target cells. J Virol 81:7548–7558

    Article  PubMed  CAS  Google Scholar 

  70. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    Article  PubMed  CAS  Google Scholar 

  71. Nagy P, Vereb G, Damjanovich S, Mátyus L, Szöllősi J (2006) Measuring FRET in flow and image cytometry. In: Robinson JP (ed) Current protocols in cytometry. Wiley, New York, pp 12.18.11–12.18.13

    Google Scholar 

  72. Szöllősi J, Damjanovich S, Nagy P, Vereb G, Mátyus L (2006) Principles of resonance energy transfer. In: Robinson JP (ed) Current protocols in cytometry. Wiley, New York, pp 1.12.11–11.12.16

    Google Scholar 

  73. VanBeek DB, Zwier MC, Shorb JM, Krueger BP (2007) Fretting about FRET: correlation between kappa and R. Biophys J 92:4168–4178

    Article  PubMed  CAS  Google Scholar 

  74. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–193

    Article  PubMed  CAS  Google Scholar 

  75. Anikovsky M, Dale L, Ferguson S, Petersen N (2008) Resonance energy transfer in cells: a new look at fixation effect and receptor aggregation on cell membrane. Biophys J 95:1349–1359

    Article  PubMed  CAS  Google Scholar 

  76. Kenworthy AK, Edidin M (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142:69–84

    Article  PubMed  CAS  Google Scholar 

  77. Bastiaens PI, Majoul IV, Verveer PJ, Soling HD, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 15:4246–4253

    PubMed  CAS  Google Scholar 

  78. Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209:56–70

    Article  PubMed  CAS  Google Scholar 

  79. Kirber MT, Chen K, Keaney JF Jr (2007) YFP photoconversion revisited: confirmation of the CFP-like species. Nat Methods 4:767–768

    Article  PubMed  CAS  Google Scholar 

  80. Roszik J, Szöllősi J, Vereb G (2008) AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinform 9:346

    Article  CAS  Google Scholar 

  81. Rasband WS (1997) ImageJ, US National Institutes of Health, Bethesda, MD. http://res.info.nih.gov/ij

  82. Stepensky D (2007) FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments. Biochem Biophys Res Commun 359:752–758

    Article  PubMed  CAS  Google Scholar 

  83. Trón L, Szöllősi J, Damjanovich S, Helliwell SH, Arndt-Jovin DJ, Jovin TM (1984) Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 45:939–946

    Article  PubMed  Google Scholar 

  84. Sebestyén Z, Nagy P, Horváth G, Vámosi G, Debets R, Gratama JW, Alexander DR, Szöllősi J (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135

    Article  PubMed  CAS  Google Scholar 

  85. Roszik J, Lisboa D, Szöllősi J, Vereb G (2009) Evaluation of intensity-based ratiometric FRET in image cytometry – approaches and a software solution. Cytom A 75:761–767

    Article  Google Scholar 

  86. Feige JN, Sage D, Wahli W, Desvergne B, Gelman L (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68:51–58

    Article  PubMed  CAS  Google Scholar 

  87. Fazekas Z, Petrás M, Fábián A, Pályi-Krekk Z, Nagy P, Damjanovich S, Vereb G, Szöllősi J (2008) Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy. Cytom A 73:209–219

    Article  CAS  Google Scholar 

  88. Jovin TM, Arndt-Jovin DJ (1989) Luminescence digital imaging microscopy. Annu Rev Biophys Biophys Chem 18:271–308

    Article  PubMed  CAS  Google Scholar 

  89. Young RM, Arnette JK, Roess DA, Barisas BG (1994) Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys J 67:881–888

    Article  PubMed  CAS  Google Scholar 

  90. Chen Y, Muller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    Article  PubMed  CAS  Google Scholar 

  91. Brock R, Hink MA, Jovin TM (1998) Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J 75:2547–2557

    Article  PubMed  CAS  Google Scholar 

  92. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  PubMed  CAS  Google Scholar 

  93. Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332

    Article  PubMed  CAS  Google Scholar 

  94. Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89:1317–1327

    Article  PubMed  CAS  Google Scholar 

  95. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583

    Article  PubMed  CAS  Google Scholar 

  96. Bader AN, Hofman EG, Voortman J, van Bergen En Henegouwen PM, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97:2613–2622

    Article  PubMed  CAS  Google Scholar 

  97. Lidke DS, Nagy P, Barisas BG, Heintzmann R, Post JN, Lidke KA, Clayton AH, Arndt-Jovin DJ, Jovin TM (2003) Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 31:1020–1027

    Article  PubMed  CAS  Google Scholar 

  98. Yeow EK, Clayton AH (2007) Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys J 92:3098–3104

    Article  PubMed  CAS  Google Scholar 

  99. Gadella TW Jr, Jovin TM (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol 129:1543–1558

    Article  PubMed  CAS  Google Scholar 

  100. Clayton AH, Klonis N, Cody SH, Nice EC (2005) Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells. Eur Biophys J 34:82–90

    Article  PubMed  CAS  Google Scholar 

  101. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664

    Article  PubMed  CAS  Google Scholar 

  102. Szabó Á, Szöllősi J, Nag P (2010) Coclustering of ErbB1 and ErbB2 revealed by FRET-sensitized acceptor bleaching. Biophys J 99(1):105–114

    Article  PubMed  CAS  Google Scholar 

  103. Mekler VM (1994) A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem Photobiol 59:615–620

    CAS  Google Scholar 

  104. Mekler VM, Averbakh AZ, Sudarikov AB, Kharitonova OV (1997) Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. J Photochem Photobiol B 40:278–287

    Article  PubMed  CAS  Google Scholar 

  105. Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19:124–134

    Article  PubMed  CAS  Google Scholar 

  106. Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M, Yarden Y (1999) The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 96:4995–5000

    Article  PubMed  CAS  Google Scholar 

  107. Lemmon MA (2009) Ligand-induced ErbB receptor dimerization. Exp Cell Res 315:638–648

    Article  PubMed  CAS  Google Scholar 

  108. Mocanu MM, Fazekas Z, Petrás M, Nagy P, Sebestyén Z, Isola J, Timar J, Park JW, Vereb G, Szöllősi J (2005) Associations of ErbB2, β1-integrin and lipid rafts on Herceptin (Trastuzumab) resistant and sensitive tumor cell lines. Cancer Lett 227:201–212

    Article  PubMed  CAS  Google Scholar 

  109. Pályi-Krekk Z, Barok M, Isola J, Tammi M, Szöllősi J, Nagy P (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43:2423–2433

    Article  PubMed  CAS  Google Scholar 

  110. Kawashima N, Nakayama K, Itoh K, Itoh T, Ishikawa M, Biju V (2010) Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Chemistry 16:1186–1192

    Article  PubMed  CAS  Google Scholar 

  111. Lidke DS, Wilson BS (2009) Caught in the act: quantifying protein behaviour in living cells. Trends Cell Biol 19:566–574

    Article  PubMed  CAS  Google Scholar 

  112. Gimpl G, Gehrig-Burger K (2007) Cholesterol reporter molecules. Biosci Rep 27:335–358

    Article  PubMed  CAS  Google Scholar 

  113. Dijkstra J, Swartz GM Jr, Raney JJ, Aniagolu J, Toro L, Nacy CA, Green SJ (1996) Interaction of anti-cholesterol antibodies with human lipoproteins. J Immunol 157:2006–2013

    PubMed  CAS  Google Scholar 

  114. Swartz GM Jr, Gentry MK, Amende LM, Blanchette-Mackie EJ, Alving CR (1988) Antibodies to cholesterol. Proc Natl Acad Sci USA 85:1902–1906

    Article  PubMed  CAS  Google Scholar 

  115. Clarke MS, Vanderburg CR, Bamman MM, Caldwell RW, Feeback DL (2000) In situ localization of cholesterol in skeletal muscle by use of a monoclonal antibody. J Appl Physiol 89:731–741

    PubMed  CAS  Google Scholar 

  116. Perl-Treves D, Kessler N, Izhaky D, Addadi L (1996) Monoclonal antibody recognition of cholesterol monohydrate crystal faces. Chem Biol 3:567–577

    Article  PubMed  CAS  Google Scholar 

  117. Kruth HS, Ifrim I, Chang J, Addadi L, Perl-Treves D, Zhang WY (2001) Monoclonal antibody detection of plasma membrane cholesterol microdomains responsive to cholesterol trafficking. J Lipid Res 42:1492–1500

    PubMed  CAS  Google Scholar 

  118. Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427–29435

    Article  PubMed  CAS  Google Scholar 

  119. Underwood KW, Jacobs NL, Howley A, Liscum L (1998) Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane. J Biol Chem 273:4266–4274

    Article  PubMed  CAS  Google Scholar 

  120. Steinbach G, Pomozi I, Zsiros O, Pay A, Horvath GV, Garab G (2008) Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytom A 73:202–208

    Article  Google Scholar 

  121. Bíró A, Horváth A, Varga L, Nemesanszky E, Csepregi A, David K, Tolvaj G, Ibranyi E, Telegdy L, Par A, Romics L, Karadi I, Horanyi M, Gervain J, Ribiczey P, Csondes M, Fust G (2003) Serum anti-cholesterol antibodies in chronic hepatitis-C patients during IFN-α-2b treatment. Immunobiology 207:161–168

    Article  PubMed  Google Scholar 

  122. Egri G, Orosz I (2006) Elevated anti-cholesterol antibody levels in the sera of non-small cell lung cancer patients. Interact Cardiovasc Thorac Surg 5:649–651

    Article  PubMed  Google Scholar 

  123. Horváth A, Banhegyi D, Bíró A, Ujhelyi E, Veres A, Horváth L, Prohaszka Z, Bacsi A, Tarjan V, Romics L, Horváth I, Toth FD, Fust G, Karadi I (2001) High level of anticholesterol antibodies (ACHA) in HIV patients. Normalization of serum ACHA concentration after introduction of HAART. Immunobiology 203:756–768

    Article  PubMed  Google Scholar 

  124. Horváth A, Fust G, Horváth I, Vallus G, Duba J, Harcos P, Prohaszka Z, Rajnavölgyi E, Janoskuti L, Kovács M, Császár A, Romics L, Karadi I (2001) Anti-cholesterol antibodies (ACHA) in patients with different atherosclerotic vascular diseases and healthy individuals. Characterization of human ACHA. Atherosclerosis 156:185–192

    Article  PubMed  Google Scholar 

  125. Gombos I, Detre C, Vámosi G, Matkó J (2004) Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol Lett 92:117–124

    Article  PubMed  CAS  Google Scholar 

  126. Poloso NJ, Roche PA (2004) Association of MHC class II-peptide complexes with plasma membrane lipid microdomains. Curr Opin Immunol 16:103–107

    Article  PubMed  CAS  Google Scholar 

  127. Pizzo P, Viola A (2004) Lipid rafts in lymphocyte activation. Microbes Infect 6:686–692

    Article  PubMed  CAS  Google Scholar 

  128. Rosenberger CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825

    Article  PubMed  CAS  Google Scholar 

  129. Yoshizaki F, Nakayama H, Iwahara C, Takamori K, Ogawa H, Iwabuchi K (2008) Role of glycosphingolipid-enriched microdomains in innate immunity: microdomain-dependent phagocytic cell functions. Biochim Biophys Acta 1780:383–392

    Article  PubMed  CAS  Google Scholar 

  130. Beck Z, Balogh A, Kis A, Izsepi E, Cervenak L, László G, Bíró A, Liliom K, Mocsár G, Vámosi G, Fust G, Matkó J (2010) New cholesterol-specific antibodies remodel HIV-1 target cells’ surface and inhibit their in vitro virus production. J Lipid Res 51:286–296

    Article  PubMed  CAS  Google Scholar 

  131. Brown BK, Karasavvas N, Beck Z, Matyas GR, Birx DL, Polonis VR, Alving CR (2007) Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: role of phosphate-binding subsites. J Virol 81:2087–2091

    Article  PubMed  CAS  Google Scholar 

  132. Kozak SL, Heard JM, Kabat D (2002) Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus. J Virol 76:1802–1815

    Article  PubMed  CAS  Google Scholar 

  133. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265

    Article  PubMed  CAS  Google Scholar 

  134. Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A (2008) Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 25:83–94

    Article  PubMed  CAS  Google Scholar 

  135. Rawat SS, Gallo SA, Eaton J, Martin TD, Ablan S, KewalRamani VN, Wang JM, Blumenthal R, Puri A (2004) Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J Virol 78:7360–7368

    Article  PubMed  CAS  Google Scholar 

  136. Manes S, del Real G, Lacalle RA, Lucas P, Gomez-Mouton C, Sanchez-Palomino S, Delgado R, Alcami J, Mira E, Martinez AC (2000) Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep 1:190–196

    Article  PubMed  CAS  Google Scholar 

  137. Nguyen DH, Giri B, Collins G, Taub DD (2005) Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement. Exp Cell Res 304:559–569

    Article  PubMed  CAS  Google Scholar 

  138. Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071

    Article  PubMed  CAS  Google Scholar 

  139. Kunert R, Wolbank S, Stiegler G, Weik R, Katinger H (2004) Characterization of molecular features, antigen-binding, and in vitro properties of IgG and IgM variants of 4E10, an anti-HIV type 1 neutralizing monoclonal antibody. AIDS Res Hum Retroviruses 20:755–762

    Article  PubMed  CAS  Google Scholar 

  140. Zwick MB, Komori HK, Stanfield RL, Church S, Wang M, Parren PW, Kunert R, Katinger H, Wilson IA, Burton DR (2004) The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J Virol 78:3155–3161

    Article  PubMed  CAS  Google Scholar 

  141. Phogat S, Wyatt RT, Karlsson Hedestam GB (2007) Inhibition of HIV-1 entry by antibodies: potential viral and cellular targets. J Intern Med 262:26–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Hungarian Scientific Research Fund (K72677, K68763, K62648, T49696), from the European Commission (LSHC-CT-2005-018914), from the New Hungary Development Plan cofinanced by the European Social Fund and the European Regional Development Fund (TÁMOP-4.2.2-08/1-2008-0019), and from National Office of Research and Development (Pázmány Grant, RET-06/2006). The financial support of the Hungarian Academy of Sciences is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Matkó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nagy, P., Balogh, A., Szöllősi, J., Matkó, J. (2011). Mapping and Immunomodulation of the Cell Surface Protein Architecture with Therapeutic Implications: Fluorescence Is a Key Tool of Solution. In: Geddes, C. (eds) Reviews in Fluorescence 2009. Reviews in Fluorescence, vol 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9672-5_8

Download citation

Publish with us

Policies and ethics