Skip to main content

Time-Correlated, Single-Photon Counting Methods in Endothelial Cell Mechanobiology

  • Chapter
  • First Online:
  • 917 Accesses

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2009))

Abstract

While mechanical forces are known to guide the development of nearly all biological tissues including bone, cartilage, and many soft tissues, much attention has focused on endothelial cell mechanobiology and the role of blood flow-induced forces in regulating the health of blood vessels. It is now well accepted that modulation of endothelial cell physiology and pathophysiology by fluid mechanical forces is a principal reason why atherosclerotic lesions are located at areas of disturbed flow including at arterial branch points and areas of high arterial curvature. However, the molecular identity of endothelial cell mechanosensors remains elusive largely due to the complexity of cell mechanics and to the difficulty in identifying when and where a candidate mechanosensor has been perturbed. Thus, new methods of cell-specific mechanical modeling along with molecular-scale readouts of perturbation by force are needed to help unravel the magnitude-, time-, and position-dependent responses of endothelial cells to mechanical forces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Butler PJ, Weinbaum S, Chien S, Lemons DE (2000) Endothelium-dependent, shear-induced vasodilation is rate-sensitive. Microcirculation 7:53–65

    Article  PubMed  CAS  Google Scholar 

  2. Butler PJ, Tsou TC, Li JY, Usami S, Chien S (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16:216–218

    PubMed  CAS  Google Scholar 

  3. Frangos JA, Huang TY, Clark CB (1996) Steady shear and step changes in shear stimulate endothelium via independent mechanisms–superposition of transient and sustained nitric oxide production. Biochem Biophys Res Commun 224:660–665

    Article  PubMed  CAS  Google Scholar 

  4. DePaola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12:1254–1257

    Article  PubMed  CAS  Google Scholar 

  5. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  PubMed  CAS  Google Scholar 

  6. Koller A, Kaley G (1991) Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am J Physiol 260:H862–H868

    PubMed  CAS  Google Scholar 

  7. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  8. Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577

    Article  PubMed  Google Scholar 

  9. Davies PF (1997) Overview: temporal and spatial relationships in shear stress-mediated endothelial signalling. J Vasc Res 34:208–211

    Article  PubMed  CAS  Google Scholar 

  10. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772

    PubMed  CAS  Google Scholar 

  11. Mathur AB, Truskey GA, Reichert WM (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78:1725–1735

    Article  PubMed  CAS  Google Scholar 

  12. Trache A, Meininger GA (2005) Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J Biomed Opt 10:064023

    Article  PubMed  Google Scholar 

  13. Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    Article  PubMed  CAS  Google Scholar 

  14. Huang H, Dong CY, Kwon HS, Sutin JD, Kamm RD, So PT (2002) Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. Biophys J 82:2211–2223

    Article  PubMed  CAS  Google Scholar 

  15. Charras GT, Horton MA (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83:858–879

    Article  PubMed  CAS  Google Scholar 

  16. Ferko MC, Patterson BW, Butler PJ (2006) High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy. Microsc Res Tech 69:648–655

    Article  PubMed  Google Scholar 

  17. Osborn EA, Rabodzey A, Dewey CF Jr, Hartwig JH (2006) Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am J Physiol Cell Physiol 290:C444–C452

    Article  PubMed  CAS  Google Scholar 

  18. Sultan C, Stamenovic D, Ingber DE (2004) A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng 32:520–530

    Article  PubMed  Google Scholar 

  19. Wang N, Suo Z (2005) Long-distance propagation of forces in a cell. Biochem Biophys Res Commun 328:1133–1138

    Article  PubMed  CAS  Google Scholar 

  20. Geiger RV, Berk BC, Alexander RW, Nerem RM (1992) Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am J Physiol 262:C1411–C1417

    PubMed  CAS  Google Scholar 

  21. Levitan I, Christian AE, Tulenko TN, Rothblat GH (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115:405–416

    Article  PubMed  CAS  Google Scholar 

  22. Li S, Kim M, Hu YL, Jalali S, Schlaepfer DD, Hunter T, Chien S, Shyy JY (1997) Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 272:30455–30462

    Article  PubMed  CAS  Google Scholar 

  23. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 98:8955–8960

    Article  PubMed  CAS  Google Scholar 

  24. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  PubMed  CAS  Google Scholar 

  25. Vukojevic V, Pramanik A, Yakovleva T, Rigler R, Terenius L, Bakalkin G (2005) Study of molecular events in cells by fluorescence correlation spectroscopy. Cell Mol Life Sci 62:535–550

    Article  PubMed  CAS  Google Scholar 

  26. Ferko MC, Bhatnagar A, Garcia MB, Butler PJ (2006) Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng 35(2):208–223

    Article  PubMed  Google Scholar 

  27. Gullapalli RR, Tabouillot T, Mathura R, Dangaria J, Butler PJ (2007) Integrated multimodal microscopy, time resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology. J Biomed Opt 12(1):014012

    Article  PubMed  Google Scholar 

  28. Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79:834–839

    Article  PubMed  CAS  Google Scholar 

  29. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136–e142

    Article  PubMed  CAS  Google Scholar 

  30. Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JA, Kajiya F (2003) Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 285:H722–H726

    PubMed  CAS  Google Scholar 

  31. Butler PJ, Norwich G, Weinbaum S, Chien S (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiol Cell Physiol 280:C962–C969

    PubMed  CAS  Google Scholar 

  32. Haidekker MA, L’Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278:H1401–H1406

    PubMed  CAS  Google Scholar 

  33. Helmke BP, Goldman RD, Davies PF (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res 86:745–752

    Article  PubMed  CAS  Google Scholar 

  34. Helmke BP, Rosen AB, Davies PF (2003) Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys J 84:2691–2699

    Article  PubMed  CAS  Google Scholar 

  35. Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285:C1082–C1090

    PubMed  CAS  Google Scholar 

  36. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  37. Davies PF, Robotewskyj A, Griem ML (1994) Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest 93:2031–2038

    Article  PubMed  CAS  Google Scholar 

  38. Zaidel-Bar R, Kam Z, Geiger B (2005) Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow. J Cell Sci 118:3997–4007

    Article  PubMed  CAS  Google Scholar 

  39. Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046

    Article  PubMed  CAS  Google Scholar 

  40. Sato M, Levesque MJ, Nerem RM (1987) An application of the micropipette technique to the measurement of mechanical properties of cultured bovine aortic endothelial cells. J Biomech Eng 109:27–34

    Article  PubMed  CAS  Google Scholar 

  41. Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K (2000) Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J Biomech 33:127–135

    Article  PubMed  CAS  Google Scholar 

  42. Davies PF (1995) Flow-mediated endothelial mechanotransduction [Review] [407 refs]. Physiol Rev 75:519–560

    PubMed  CAS  Google Scholar 

  43. Rizzo V, Sung A, Oh P, Schnitzer JE (1998) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:26323–26329

    Article  PubMed  CAS  Google Scholar 

  44. Karcher H, Lammerding J, Huang H, Lee RT, Kamm RD, Kaazempur-Mofrad MR (2003) A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J 85:3336–3349

    Article  PubMed  CAS  Google Scholar 

  45. Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87:2870–2884

    Article  PubMed  CAS  Google Scholar 

  46. Fujiwara K, Masuda M, Osawa M, Kano Y, Katoh K (2001) Is PECAM-1 a mechanoresponsive molecule? Cell Struct Funct 26:11–17

    Article  PubMed  CAS  Google Scholar 

  47. Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci USA 99:3546–3551

    Article  PubMed  CAS  Google Scholar 

  48. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  PubMed  CAS  Google Scholar 

  49. Elson E, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  50. Magde D, Elson E, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  51. Zander C, Enderlein J, Keller RA (2002) Single-molecule detection in solution methods and applications. Wiley-VCH, Berlin

    Book  Google Scholar 

  52. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  PubMed  CAS  Google Scholar 

  53. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  54. Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379

    Article  CAS  Google Scholar 

  55. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  56. Gielen E, Vercammen J, Sykora J, Humpolickova J, Vandeven M, Benda A, Hellings N, Hof M, Engelborghs Y, Steels P, Ameloot M (2005) Diffusion of sphingomyelin and myelin oligodendrocyte glycoprotein in the membrane of OLN-93 oligodendroglial cells studied by fluorescence correlation spectroscopy. C R Biol 328:1057–1064

    Article  PubMed  CAS  Google Scholar 

  57. Packard BS, Wolf DE (1985) Fluorescence lifetimes of carbocyanine lipid analogues in phospholipid bilayers. Biochemistry 24:5176–5181

    Article  PubMed  CAS  Google Scholar 

  58. Buschmann V, Weston KD, Sauer M (2003) Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjug Chem 14:195–204

    Article  PubMed  CAS  Google Scholar 

  59. Becker W (2006) Advanced time-correlated single photon counting techniques. Springer, New York

    Google Scholar 

  60. Becker W, Bergmann A, Haustein E, Petrasek Z, Schwille P, Biskup C, Kelbauskas L, Benndorf K, Klocker N, Anhut T, Riemann I, Konig K (2006) Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc Res Tech 69:186–195

    Article  PubMed  CAS  Google Scholar 

  61. Wahl M, Gregor I, Patting M, Enderlein J (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11:3583–3591

    Article  PubMed  Google Scholar 

  62. Pramanik A, Rigler R (2001) Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol Chem 382:371–378

    Article  PubMed  CAS  Google Scholar 

  63. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461–8466

    Article  PubMed  CAS  Google Scholar 

  64. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043

    Article  PubMed  CAS  Google Scholar 

  65. Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747

    Article  PubMed  CAS  Google Scholar 

  66. Vaz WLC, Clegg RM, Hallmann D (1985) Translational diffusion of lipids in liquid-crystalline phase phosphatidylcholine multibilayers – a comparison of experiment with theory. Biochemistry 24:781–786

    Article  PubMed  CAS  Google Scholar 

  67. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  PubMed  CAS  Google Scholar 

  68. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251

    Article  PubMed  CAS  Google Scholar 

  69. Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259:339–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Butler, P.J., Gullapalli, R.R., Tabouillot, T., Ferko, M.C. (2011). Time-Correlated, Single-Photon Counting Methods in Endothelial Cell Mechanobiology. In: Geddes, C. (eds) Reviews in Fluorescence 2009. Reviews in Fluorescence, vol 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9672-5_6

Download citation

Publish with us

Policies and ethics