Metal Enhancement of Near-IR Fluorescence for Molecular Biotechnology Applications

  • Jon P. Anderson
  • John G. Williams
  • Daniel L. Grone
  • Michael G. Nichols
Part of the Reviews in Fluorescence book series (RFLU, volume 2009)


Metal-enhanced fluorescence (MEF) can increase the overall emissions of a multitude of fluorophores by positioning the fluorophore in close proximity to an appropriate metal-coated surface. Near-infrared (near-IR) fluorophores placed near these metal surfaces combine the increased emissions of MEF with the low background characteristics of near-IR fluorescence. Together, this combination of high emission, low background detection may provide a powerful tool in the analysis of biological samples. In this brief review, we will outline the feasibility of using near-IR MEF in biotechnology research, will cover the types of experiments required to bring this technology from the feasibility stage to a commercial product, usable by molecular biologists, and will investigate the sources of background emissions that may be further reduced in the future.


Silver Nanoparticles Excitation Power Silver Surface Metal Island Silver Island Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the NIH National Center for Research Resources, SBIR Grant number RR021785. We also thank the Center for Fluorescence Spectroscopy which is supported by an NCRR grant number RR08119 for their assistance.


  1. 1.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  2. 2.
    Alejandro-Arellano M, Ung T, Blanco A, Mulvaney P, Liz-Marzan LM (2000) Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure Appl Chem 72:257–267CrossRefGoogle Scholar
  3. 3.
    Aslan K, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF): application to ultra fast and sensitive clinical assays. J Fluoresc 16:3–8PubMedCrossRefGoogle Scholar
  4. 4.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62PubMedCrossRefGoogle Scholar
  5. 5.
    Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128:4206–4207PubMedCrossRefGoogle Scholar
  6. 6.
    Aslan K, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382:926–933PubMedCrossRefGoogle Scholar
  7. 7.
    Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9:538–544PubMedCrossRefGoogle Scholar
  8. 8.
    Aslan K, Lakowicz JR, Geddes CD (2005) Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:6247–6251PubMedCrossRefGoogle Scholar
  9. 9.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654PubMedCrossRefGoogle Scholar
  10. 10.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157–3162PubMedCrossRefGoogle Scholar
  11. 11.
    Brumbaugh JA, Middendorf LR, Grone DL, Ruth JL (1988) Continuous, on-line DNA sequencing using oligodeoxynucleotide primers with multiple fluorophores. Proc Natl Acad Sci USA 85:5610–5614PubMedCrossRefGoogle Scholar
  12. 12.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRefGoogle Scholar
  13. 13.
    Chowdhury MH (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88:173104PubMedCrossRefGoogle Scholar
  14. 14.
    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100:11350–11355PubMedCrossRefGoogle Scholar
  15. 15.
    Corrigan TD, Guo S, Phaneud RJ, Szmacinski H (2005) Enhanced fluorescence from periodic arrays of silver nanoparticles. J Fluoresc 15:777–784PubMedCrossRefGoogle Scholar
  16. 16.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762PubMedCrossRefGoogle Scholar
  17. 17.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Letts 26:163–166CrossRefGoogle Scholar
  18. 18.
    Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113:195–287CrossRefGoogle Scholar
  19. 19.
    Freeman GR, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267:1629–1632PubMedCrossRefGoogle Scholar
  20. 20.
    Frey PA, Frey TG (1999) Synthesis of undecagold labeling compounds and their applications in electron microscopic analysis of multiprotein complexes. J Struct Biol 127:94–100PubMedCrossRefGoogle Scholar
  21. 21.
    Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking from silver nanoparticles. J Phys Chem B 107:9989–9993PubMedCrossRefGoogle Scholar
  22. 22.
    Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380:269–272CrossRefGoogle Scholar
  23. 23.
    Geddes CD, Parfenov A, Lakowicz JR (2003) Photodeposition of silver can result in metal-enhanced fluorescence. Appl Spectrosc 57:526–531PubMedCrossRefGoogle Scholar
  24. 24.
    Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13:267–276CrossRefGoogle Scholar
  25. 25.
    Geddes CD, Parfenov A, Roll D, Uddin MJ, Lakowicz JR (2003) Fluorescence spectral properties of indocyanine green on a roughened platinum electrode: metal-enhanced fluorescence. J Fluoresc 13:453–457PubMedCrossRefGoogle Scholar
  26. 26.
    Gersten JI, Nitzan A (1985) Photophysics and photochemistry near surfaces and small particles. Surf Sci 158:165–189CrossRefGoogle Scholar
  27. 27.
    Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRefGoogle Scholar
  28. 28.
    Gryczynski I, Malicka J, Gryczynski Z, Geddes CD, Lakowicz JR (2002) The CFS engineers the intrinsic radiative decay rate of low quantum yield fluorophores. J Fluoresc 12:11–13CrossRefGoogle Scholar
  29. 29.
    Jensen TR, Malinsky MD, Haynes CL, Van Duyne P (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem 104:10549–10556Google Scholar
  30. 30.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903PubMedCrossRefGoogle Scholar
  31. 31.
    Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490PubMedCrossRefGoogle Scholar
  32. 32.
    Kaiser RJ, MacKellar SL, Vinayak RS, Sanders JZ, Saavedra RA, Hood LE (1989) Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res 17:6087–6102PubMedCrossRefGoogle Scholar
  33. 33.
    Kummerlen J, Leitner A, Brunner H, Aussenegg FR, Wokaun A (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046CrossRefGoogle Scholar
  34. 34.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  35. 35.
    Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24PubMedCrossRefGoogle Scholar
  36. 36.
    Lakowicz JR, Gryczynski I, Malicka J, Gryczynski Z, Geddes CD (2002) Enhanced and localized multiphoton excited fluorescence near metallic silver islands: metallic islands can increase probe photostability. J Fluoresc 12:299–302CrossRefGoogle Scholar
  37. 37.
    Lakowicz JR, Gryczynski I, Shen Y, Malicka J, Gryczynski Z (2001) Intensified fluorescence. Photonics Spectra 35:96–104Google Scholar
  38. 38.
    Lakowicz JR, Malicka J, Gryczynski I (2003) Increased intensities of YOYO-1-labeled DNA oligomers near silver particles. Photochem Photobiol 77:604–607PubMedCrossRefGoogle Scholar
  39. 39.
    Lakowicz JR, Shen B, Gryczynski Z, D’Auria S, Gryczynski I (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286:875–879PubMedCrossRefGoogle Scholar
  40. 40.
    Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277PubMedCrossRefGoogle Scholar
  41. 41.
    Lee TH, Gonzalez JI, Dickson RM (2002) Strongly enhanced field-dependent single-molecule electroluminescence. Proc Natl Acad Sci USA 99:10272–10275PubMedCrossRefGoogle Scholar
  42. 42.
    LI-COR (2006) Odyssey infrared imaging system: users guide version 1.2. LI-COR Inc.Google Scholar
  43. 43.
    Lukomska J, Malicka J, Gryczynski I, Lakowicz JR (2004) Fluorescence enhancements on silver colloid coated surfaces. J Fluoresc 14:417–423PubMedCrossRefGoogle Scholar
  44. 44.
    Malicka J, Gryczynski I, Fang J, Lakowicz JR (2003) Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. Anal Biochem 317:136–146PubMedCrossRefGoogle Scholar
  45. 45.
    Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8:472–478PubMedCrossRefGoogle Scholar
  46. 46.
    Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal Biochem 315:57–66PubMedCrossRefGoogle Scholar
  47. 47.
    Malicka J, Gryczynski I, Lakowicz JR (2003) Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces. Anal Chem 75:4408–4414PubMedCrossRefGoogle Scholar
  48. 48.
    Malicka J, Gryczynski I, Maliwal BP, Fang J, Lakowicz JR (2003) Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. Biopolymers 72:96–104PubMedCrossRefGoogle Scholar
  49. 49.
    Matveeva EG, Gryczynski I, Malicka J, Gryczynski Z, Goldys E, Howe J, Berndt KW, Lakowicz JR (2005) Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission. J Fluoresc 15:865–871PubMedCrossRefGoogle Scholar
  50. 50.
    Middendorf LR, Amen J, Bruce RC, Draney D, DeGraff D, Gewecke J, Grone DL, Humphrey P, Little G, Lugade A, Narayanan N, Oommen A, Osterman H, Peterson R, Rada J, Raghavachari R, Roemer SC (1998) Near-infrared fluorescence instrumentation for DNA analysis. In: Daehne S (ed) Near-infrared dyes for high technology applications. Kluwer Academic Publishers, The Netherlands, pp 21–54CrossRefGoogle Scholar
  51. 51.
    Middendorf LR, Bruce JC, Bruce RC, Eckles RD, Grone DL, Roemer SC, Sloniker GD, Steffens DL, Sutter SL, Brumbaugh JA et al (1992) Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 13:487–494PubMedCrossRefGoogle Scholar
  52. 52.
    Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283:1670–1676PubMedCrossRefGoogle Scholar
  53. 53.
    Muniz-Miranda M (2002) SERS effect from silver photoreduced on to silica colloidal nanoparticles. J Ram Spec 33:295–297CrossRefGoogle Scholar
  54. 54.
    Ni F, Cotton TM (1986) Chemical procedure for preparing surface-enhanced Raman scattering active silver films. Anal Chem 58:3159–3163PubMedCrossRefGoogle Scholar
  55. 55.
    Olive DM (2004) Quantitative methods for the analysis of protein phosphorylation in drug development. Expert Rev Proteomics 1:327–341PubMedCrossRefGoogle Scholar
  56. 56.
    Pastoriza-Santos II, Liz-Marzan LM (2000) Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 72:83–90CrossRefGoogle Scholar
  57. 57.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106PubMedCrossRefGoogle Scholar
  58. 58.
    Prikulis J, Murty KV, Olin H, Kall M (2003) Large-area topography analysis and near-field Raman spectroscopy using bent fibre probes. J Microsc 210:269–273PubMedCrossRefGoogle Scholar
  59. 59.
    Pugh VJ, Szmacinski H, Moore WE, Geddes CD, Lakowicz JR (2003) Submicrometer spatial resolution of metal-enhanced fluorescence. Appl Spectrosc 57:1592–1598PubMedCrossRefGoogle Scholar
  60. 60.
    Randolph JB, Waggoner AS (1997) Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Res 25:2923–2929PubMedCrossRefGoogle Scholar
  61. 61.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  62. 62.
    Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001PubMedCrossRefGoogle Scholar
  63. 63.
    Seydel C (2003) Quantum dots get wet. Science 300:80–81PubMedCrossRefGoogle Scholar
  64. 64.
    Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225PubMedCrossRefGoogle Scholar
  65. 65.
    Shealy DB, Lipowska M, Lipowski J, Narayanan N, Sutter S, Strekowski L, Patonay G (1995) Synthesis, chromatographic separation, and characterization of near-infrared-labeled DNA oligomers for use in DNA sequencing. Anal Chem 67:247–251CrossRefGoogle Scholar
  66. 66.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1:18–52CrossRefGoogle Scholar
  67. 67.
    Silvert P, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1—Synthesis and characterization. J Mater Chem 6:573–577CrossRefGoogle Scholar
  68. 68.
    Silvert P, Herrera-Urbina R, Tekaia-Elhsissena K (1997) Preparation of colloidal silver dispersions by the polyol process. Part 1—Mechanism of particle formation. J Mater Chem 7:293–299CrossRefGoogle Scholar
  69. 69.
    Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679PubMedCrossRefGoogle Scholar
  70. 70.
    Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905PubMedCrossRefGoogle Scholar
  71. 71.
    Trevisiol E, Renard A, Defrancq E, Lhomme J (2000) Fluorescent labelling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction. Nucleosides Nucleotides Nucleic Acids 19:1427–1439PubMedCrossRefGoogle Scholar
  72. 72.
    Velikov KP, Zegers GE, van Blaaderen A (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389CrossRefGoogle Scholar
  73. 73.
    Yu H, Chao J, Patek D, Mujumdar R, Mujumdar S, Waggoner AS (1994) Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Res 22:3226–3232PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B 109:7969–7975PubMedCrossRefGoogle Scholar
  75. 75.
    Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jon P. Anderson
    • 1
  • John G. Williams
    • 1
  • Daniel L. Grone
    • 1
  • Michael G. Nichols
    • 2
  1. 1.LI-COR Biosciences Inc.LincolnUSA
  2. 2.Physics DepartmentCreighton UniversityOmahaUSA

Personalised recommendations