Skip to main content

Conjecturable Role of Aluminum in Pathophysiology of Stroke

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Escalated environmental contamination and extensive use of aluminum in the contemporary life made its exposure inevitable. Increased uses of aluminum nanoparticles in health applications are widening its impacts. Targeted accumulation of aluminum in nonrenewable cells of brain has nullified the benefits of restricted bioavailability and assimilation, and lead to the contended involvement of the metal in neurodegenerative disorders. In addition to this, special features of aluminum have coerced to evaluate its influence on the pathophysiology of stroke. The wallops of aluminum on aging, cerebrovascular dysfunction, atherogenesis, blood–brain barrier, matrix metalloproteinases, platelet reaction, and homocysteine are discussed to divulge the ways which can aggravate risk factors of stroke. Region-specific susceptibility of aluminum assails and ischemic stroke are compared to predict the link between these neurodegenerative causations. Sequence of pathophysiological changes in stroke are discussed in terms of energy inadequacy, ion-pump failure, depolarization, alteration in [Ca2+]ICF, mitochondrial dysfunction, excitotoxicity, generation of free radicals and inflammatory mediators, and mechanism of cell death are evaluated with aluminum-mediated similar changes and possible influence of aluminum has been indicated in the stroke pathophysiology. In the same line, positive and negative possibilities of aluminum are also speculated in poststroke neuroresuscitation and postconditioning neuroprotection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal A, Aggarwal P, Khatak M, Khatak S (2010) Cerebral ischemic stroke: sequels of cascade. Int J Pharm Bio Sci 1 (available at http://www.ijpbs.net/issue-3/112.pdf. Published on July-Sept, 2010, last accessed 24 June 2011)

  • Akay C, Kalman S, Dündaröz R, Sayal A, Aydin A, Ozkan Y, Gül H (2008) Serum aluminium levels in glue-sniffer adolescent and in glue containers. Basic Clin Pharmacol Toxicol 102:433–436

    PubMed  CAS  Google Scholar 

  • Al Moutaery K, Al Deeb S, Biary N, Morias C, Khan HA, Tariq M (2000) Effect of aluminum on neurological recovery in rats following spinal cord injury. J Neurosurg 93(suppl 2):276–282

    PubMed  Google Scholar 

  • Al-Hashem F (2009) Camel’s milk protects against aluminum chloride-induced toxicity in the liver and kidney of white albino rats. Am J Biochem Biotechnol 5:98–109

    CAS  Google Scholar 

  • Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischemic stroke. Int J Stroke 4:461–470

    PubMed  CAS  Google Scholar 

  • Arce C, Arteaga JL, Sánchez-Mendoza E, Oset-Gasque MJ, Cañadas S, González MP (2010) Added after anoxia-reoxigenation stress. Genistein rescues from death the rat embryo cortical neurons. Neurosci Med 1:50–59

    CAS  Google Scholar 

  • Aremu DA, Meshitsuka S (2006) Some aspects of astroglial functions and aluminum implications for neurodegeneration. Brain Res Rev 52:193–200

    PubMed  CAS  Google Scholar 

  • Aygül R, Kotan D, Yildirim A, Ulvi H, Akcay F (2008) Plasma and cerebrospinal fluid homocysteine, nitric oxide and malondialdehyde levels in acute ischemic stroke: possible role of free radicals in the development of brain injury. Eur J Gen Med 5:57–63

    Google Scholar 

  • Bailey M, Xiao H, Ogle M, Vyavahare N (2001) Aluminum chloride pretreatment of elastin inhibits elastolysis by matrix metalloproteinases and leads to inhibition of elastin-oriented calcification. Am J Pathol 159:1981–1986

    PubMed  CAS  Google Scholar 

  • Banks WA (2001) Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7:125–133

    PubMed  CAS  Google Scholar 

  • Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11:973–984

    PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ, Durham DA (1989) Bidirectional transport of interleukin-1 alpha across the blood- brain barrier. Brain Res Bull 23:433–437

    PubMed  CAS  Google Scholar 

  • Banks WA, Schally AV, Barrera CM, Fasold MB, Durham DA, Csernus VJ, Groot K, Kastin AJ (1990) Permeability of the murine blood-brain barrier to some octapeptide analogs of somatostatin. Proc Natl Acad Sci USA 87:6762–6766

    PubMed  CAS  Google Scholar 

  • Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC, Vyavahare NR (2004) Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110:3480–3487

    PubMed  CAS  Google Scholar 

  • Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739:88–96

    PubMed  CAS  Google Scholar 

  • Bergerat A, Decano J, Wu CJ, Choi H, Nesvizhskii A, Moran AM, Ruiz-Opazo N, Steffen M, Herrera VL (2011) Pre-stroke proteomic changes in cerebral microvessels in stroke-prone, transgenic[hCETP]-hyperlipidemic, Dahl salt-sensitive hypertensive rats. Mol Med. doi:10.2119/molmed.2010.00228

    Google Scholar 

  • Bharathi VP, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KSJ (2008) Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res 128:545–556

    CAS  Google Scholar 

  • Bihaqi SW, Sharma M, Singh AP, Tiwari M (2009) Neuroprotective role of Convolvulus pluricaulis on aluminum induced neurotoxicity in rat brain. J Ethnopharmacol 124:409–415

    PubMed  CAS  Google Scholar 

  • Bogdanović M, Bulat P (2008) Biliary function in workers occupationally exposed to aluminium dust and fumes. Arh Hig Rada Toksikol 59:135–139

    PubMed  Google Scholar 

  • Burns EM, Buschmann MBT, Kruckeberg TW, Gaetano PK, Meyer JN (1981) Blood-brain barrier, aging, brain blood flow, and sleep. In: Camey AL, Anderson EM (eds) Advances in neurology, Vol. 30: Diagnosis and treatment of brain ischemia. Raven, New York, pp 301–306

    Google Scholar 

  • Byts N, Sirén AL (2009) Erythropoietin: a multimodal neuroprotective agent. Exp Transl Stroke Med 1:4. doi:10.1186/2040-7378-1-4

    PubMed  Google Scholar 

  • Campbell A (2002) The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant 2:17–20

    Google Scholar 

  • Campbell A (2004) Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci 1035:117–132

    PubMed  CAS  Google Scholar 

  • Campbell A, Yang EY, Tsai-Turton M, Bondy SC (2002) Pro-inflammatory effects of aluminum in human glioblastoma cells. Brain Res 933:60–65

    PubMed  CAS  Google Scholar 

  • Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565–572

    PubMed  CAS  Google Scholar 

  • Carmichael ST (2008) Themes and strategies for studying the biology of stroke recovery in the post-stroke epoch. Stroke 39:1380–1388

    PubMed  Google Scholar 

  • Castellani RJ, Zhu X, Lee HG, Smith MA, Perry G (2009) Molecular pathogenesis of Alzheimer’s disease: reductionist versus expansionist approaches. Int J Mol Sci 10:1386–1406

    PubMed  CAS  Google Scholar 

  • Chao D, Xia Y (2010) Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 90:439–470

    PubMed  CAS  Google Scholar 

  • Chen L, Yokel RA, Hennig B, Toborek M (2008) Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 3:286–295

    PubMed  Google Scholar 

  • Cheung RTF (2007) Melatonin and cerebrovascular disease. In: Pandi-Perumal SR, Cardinali DP (eds) Melatonin: from molecules to therapy. Nova, New York, pp 785–801

    Google Scholar 

  • Cho SJ, Scarmeas N, Jang TW, Marder K, Tang MX, Honig LS (2011) Importance of symptomatic cerebral infarcts on cognitive performance in patients with Alzheimer’s disease. J Korean Med Sci 26:412–416

    PubMed  Google Scholar 

  • Clarke DN, Bix GJ (2010) Proteolytic extracellular matrix fragments following ischemic stroke: new insights to potential therapeutic targets. Open Drug Discov J 2:168–173

    Google Scholar 

  • Culmsee C, Kreiglstein J (2007) Ischemic brain damage after stroke: new insights into efficient therapeutic strategies. International Symposium on Neurodegeneration and Neuroprotection. EMBO Rep 8:129–133

    PubMed  CAS  Google Scholar 

  • Cunat L, Lanhers MC, Joyeux M, Burnel D (2000) Bioavailability and intestinal absorption of aluminum in rats. Effects of aluminum compounds and some dietary constituents. Biol Trace Elem Res 76:31–55

    PubMed  CAS  Google Scholar 

  • Darbre PD, Charles AK (2010) Environmental oestrogens and breast cancer: evidence for combined involvement of dietary household and cosmetic xenoestrogens. Anticancer Res 30:815–827

    PubMed  CAS  Google Scholar 

  • de Oliveira SR, Bohrer D, Gracia SC, do Nascimento PC, Normeberg S (2010) Aluminum content in intravenous solutions for administration to neonates: role of product preparation and administration methods. J Parenter Enteral Nutr 34:322–328

    Google Scholar 

  • Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17:197–218

    PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of non-apoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    PubMed  CAS  Google Scholar 

  • del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    PubMed  CAS  Google Scholar 

  • Domingo JL, Gómez M, Colomina MT (2011) Oral silicon supplementation: an effective therapy for preventing oral aluminum absorption and retention in mammals. Nutr Rev 69:41–51

    PubMed  Google Scholar 

  • El-Demerdash FM (2004) Antioxidant effects of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminum. J Trace Elem Med Biol 18:113–121

    PubMed  CAS  Google Scholar 

  • El-Kholy WM, EL-Habibi EM, Mousa AT (2010) Oxidative stress in brains of rats intoxicated with aluminum and the neuromodulating effect of different forms of sage. J Am Sci 6:1462–1474

    Google Scholar 

  • Exley CA (1999) Molecular mechanism of aluminum induced Alzheimer’s disease. J Inorg Biochem 76:133–140

    PubMed  CAS  Google Scholar 

  • Exley C, House ER (2010) Aluminum in the human brain. Monatsh Chem 142:357–363

    Google Scholar 

  • Exley C, Burgess E, Day JP, Jeffery EH, Melethil S, Yokel RA (1996) Aluminum toxicokinetics. J Toxicol Environ Health 48:569–584

    PubMed  CAS  Google Scholar 

  • Farina V, Tapparo A, Zedda M, Gadau S, Lepore G (2001) Aluminum promotes neuronal plasticity events in a mouse neuroblastoma cell line. Neurosci Lett 312:5–8

    PubMed  CAS  Google Scholar 

  • Fyiad AA (2007) Aluminium toxicity and oxidative damage reduction by melatonin in rats. J Appl Sci Res 3:1210–1217

    CAS  Google Scholar 

  • Gatta V, Drago D, Fincati K, Valenti MT, Carbonare LD, Sensi SL, Zatta P (2011) Microarray analysis on human neuroblastoma cells exposed to aluminum, β1-42-Amyloid of the β1-42-Amyloid Aluminum complex. PLoS One 6(1):e15965. doi:10.1371/journal.pone.0015965

    PubMed  Google Scholar 

  • Genius SJ (2011) Elimination of persistent toxicants from the human body. Hum Exp Toxicol 30:3–18

    Google Scholar 

  • Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J (2001) GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol Dis 8:764–773

    PubMed  CAS  Google Scholar 

  • Griffioen KJS, Ghribi O, Fox N, Savory J, DeWitt DA (2004) Aluminum maltolate-induced toxicity in NT2 cells occurs through apoptosis and includes cytochrome c release. Neurotoxicology 25:859–867

    PubMed  CAS  Google Scholar 

  • Hanafy ZE (2007) The role of melatonin in aluminium induced genotoxicity in female albino rats. Egypt J Hosp Med 28:355–362

    CAS  Google Scholar 

  • Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184:100–112

    PubMed  CAS  Google Scholar 

  • Hennerici MG, Bogousslavsky J, Sacco R (2007) Rapid reference: stroke. Mosby, London

    Google Scholar 

  • Henry A, Li QX, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Cappai R (1998) Inhibition of platelet activation by the Alzheimer’s disease amyloid precurson protein. Br J Hematol 103:402–415

    CAS  Google Scholar 

  • Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative disease. Clin Chem Lab Med 49:435–441

    PubMed  CAS  Google Scholar 

  • Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    PubMed  CAS  Google Scholar 

  • Jingtao J, Sato S (1999) Detection of calcium and aluminum in pyramidal neurons in the gerbil hippocampal CA1 region following repeated brief cerebral ischemia: X-ray microanalysis. Med Electron Microsc 32:161–166

    PubMed  CAS  Google Scholar 

  • Jones KC, Benett BG (1986) Exposure of man to environmental aluminum-An exposure commitment assessment. Sci Total Environ 52:65–82

    PubMed  CAS  Google Scholar 

  • Joshi JG, Dhar M, Clauberg M, Chauthaiwale V (1994) Iron and aluminum homeostasis in neural disorders. Environ Health Perspect 102(suppl 3):207–213

    PubMed  CAS  Google Scholar 

  • Kapiotis S, Hermann M, Exner M, Sturm BN, Scheiber-Mojdehkar B, Goldenberg H, Kopp S, Chiba P, Gmeiner BM (2005) Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification. Free Radic Res 39:1225–1231

    PubMed  CAS  Google Scholar 

  • Kaur A, Gill KD (2005) Disruption of neuronal calcium homeostasis after chronic aluminium toxicity in rats. Basic Clin Pharmacol Toxicol 96:118–122

    PubMed  CAS  Google Scholar 

  • Kaur J, Singh S, Sharma D, Singh R (2003) Aluminium-induced enhancement of ageing-related biochemical and electrophysiological parameters in rat brain regions. Ind J Biochem Biophys 40:330–339

    CAS  Google Scholar 

  • Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypothesis. Int J Alzheimers Dis 2011:276393. doi:10.4061/2011/276393

    PubMed  Google Scholar 

  • Kelly PJ, Morrow JD, Ning HM, Koroshetz W, Lo EH, Terry E, Milne GL, Hubbard J, Lee H, Stevenson E, Lederer M, Furie KL (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (BEAT-Stroke) study. Stroke 39:100–104

    PubMed  CAS  Google Scholar 

  • Kim S, Nam J, Kim K (2007) Aluminum exposure decreases dopamine D1 and D2 receptor expression in mouse brain. Hum Exp Toxicol 26:741–746

    PubMed  CAS  Google Scholar 

  • Kim JH, Park SH, Bae SS, Hong KW, Kim YD, Park KP, Choi BT, Shin HK (2011) Combinatorial effect of probucol and cilostazol in focal ischemic mice with hypercholesterolemia. J Pharmacol Exp Ther. doi:10.1124/jpet.111.181180

    Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(suppl 1):1–269

    PubMed  CAS  Google Scholar 

  • Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83:965–978

    PubMed  CAS  Google Scholar 

  • Lemire J, Mailloux R, Puiseux-Duo S, Appanna VD (2009) Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J Neurosci Res 87:1474–1483

    PubMed  CAS  Google Scholar 

  • Lerner A (2007) Aluminum is a potential environmental factor for Crohn’s diseases induction – extended hypothesis. Ann N Y Acad Sci 1107:329–345

    PubMed  CAS  Google Scholar 

  • Lévesque L (2000) Alzheimer’s disease – filling in pieces of the big puzzle. Doctoral Thesis, Department of Physiology, University of Toronto. http://tspace.library.utoronto.ca/bitstream/1807/15035/1/NQ53856.pdf. Last accessed 24 June 2011

  • Li H, Campbell A, Ali SF, Cong P, Bondy SC (2007) Chronic exposure to low levels of aluminum alters cerebral cell signaling in response to acute MPTP administration. Toxicol Ind Health 22:515–524

    Google Scholar 

  • Lima PDL, Vasconcellos MC, Montenegro RC, Bahia MO, Costa ET, Antunes LMG, Burbano RR (2011) Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: a review of the literature. Hum Exp Toxicol. doi:10.1177/0960327110396531

    Google Scholar 

  • Liu F, Yuan R, Benashski SE, McCullough LD (2009a) Changes in experimental stroke outcome across the life span. J Cereb Blood Flow Metab 29:792–802

    PubMed  CAS  Google Scholar 

  • Liu Y, Liu X, Sun D (2009b) Ion transporters and ischemic mitochondrial dysfunction. Cell Adh Migr 3:94–98

    PubMed  Google Scholar 

  • London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, De Vernejoul MC (2004) Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol 15:1043–1951

    Google Scholar 

  • Löwenberg EC, Meijers JCM, Levi M (2010) Platelet-vessel wall interaction in health and disease. Neth J Med 68:242–251

    PubMed  Google Scholar 

  • Lukiw WJ (2010) Evidence supporting a biological role for aluminum in chromatin compaction and epigenetics. J Inorg Biochem 104:1010–1012

    PubMed  CAS  Google Scholar 

  • Lukiw WJ, Percy ME, Kruck TP (2005) Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 99:1895–1898

    PubMed  CAS  Google Scholar 

  • Mahdy KA, Farrag ARH (2009) Amelioration of aluminum toxicity with black seed supplement on rats. Toxicol Environ Chem 91:567–576

    CAS  Google Scholar 

  • Manal SHH, Abd-El-Rahman AH, Mohamed ET (2010) The protective effect of vitamin e against the neurotoxic effect of aluminum chloride in male albino rat. J Am Sci 6:978–991

    Google Scholar 

  • Mannello F, Tontia GA, Darbre PD (2009) Concentration of aluminium in breast cyst fluids collected from women affected by gross cystic breast disease. J Appl Toxicol 29:1–6

    PubMed  CAS  Google Scholar 

  • Mansoor MA, Kristensen O, Hervig T, Stakkestad J, Berge T, Rolfsen S (2003) Prevalence of hyperhomocysteinemia among aluminum industry workers (XIX congress, The International Society on Thrombosis and Haemostasis, 12–18 July 2003, Birmingham, UK). J Thromb Haemost 1(suppl 1):Abstract no. P043

    Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TJM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    PubMed  CAS  Google Scholar 

  • Mashhoodi T, Zahedi-Asl S, Sarkaki AR (2004) Inhibitory effect of aluminium on KCl and phenylephrine induced contraction in isolated rat aorta. Acta Med Iran 42:379–382

    Google Scholar 

  • Mattson MP, Zhu H, Yu J, Kindy MS (2000) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 20:1358–1364

    PubMed  CAS  Google Scholar 

  • Mattson MP, Duan W, Pedersen WA, Culmsee C (2001) Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6:69–81

    PubMed  CAS  Google Scholar 

  • Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L (2010) Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health 7:4111–4126

    PubMed  CAS  Google Scholar 

  • Meiri H, Banin E, Roll M (1991) Aluminum ingestion – is it related to dementia? Rev Environ Health 9:191–205

    PubMed  CAS  Google Scholar 

  • Minami T, Ichii M, Tohno Y, Tohno S, Utsumi M, Yamada MO, Okazaki Y (1996) Age-dependent aluminum accumulation in the human aorta and cerebral artery. Biol Trace Elem Res 55:199–205

    PubMed  CAS  Google Scholar 

  • Miu AC, Benga O (2006) Aluminum and Alzheimer’s disease: a new look. J Alzheimers Dis 10:179–201

    PubMed  CAS  Google Scholar 

  • Mohammed FI, Shafagoi YA (2005) In vivo antiplatelet effect of intravenous alum in rabbits. East Mediterr Health J 11:442–448

    PubMed  CAS  Google Scholar 

  • Monteagudo FSE, Cassidy MJD, Fold PI (1989) Recent developments in aluminum toxicology. Med Toxicol Adverse Drug Exp 4:1–16

    PubMed  CAS  Google Scholar 

  • Nakashima K, Todd MM, Warner DS (1995) The relation between cerebral metabolic rate and ischemic depolarization: a comparison of the effects of hypothermia, pentobarbital and isoflurane. Anesthesiology 82:1199–1208

    PubMed  CAS  Google Scholar 

  • Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115

    PubMed  CAS  Google Scholar 

  • Nayak P, Chatterjee AK (1999) Biochemical view of aluminum-induced neurohazards. J Environ Biol 20:77–84

    CAS  Google Scholar 

  • Nayak P, Chatterjee AK (2001) Effects of aluminium exposure on brain glutamate and GABA systems: an experimental study in rats. Food Chem Toxicol 39:1285–1289

    PubMed  CAS  Google Scholar 

  • Nayak P, Chatterjee AK (2003) Dietary protein restriction causes modification in aluminum-induced alteration in gluatamate and GABA system of rat brain. BMC Neurosci 4:4

    PubMed  Google Scholar 

  • Nayak P, Sharma SB, Chowdary NVS (2010) Augmentation of aluminum-induced oxidative stress in rat cerebrum by presence of pro-oxidant (graded doses of ethanol) exposure. Neurochem Res 35:1681–1690

    PubMed  CAS  Google Scholar 

  • Nday CM, Drever BD, Salifoglou T, Platt B (2010a) Aluminium interferes with hippocampal calcium signaling in a species-specific manner. J Inorg Biochem 104:919–927

    PubMed  CAS  Google Scholar 

  • Nday CM, Drever BD, Salifoglou T, Platt B (2010b) Aluminum does not enhance β-amyloid toxicity in rat hippocampal cultures. Brain Res 1352:265–276

    PubMed  CAS  Google Scholar 

  • Neiva TJC, Fries DM, Monteiro HP, D’Amico EA, Chamone DAF (1997) Aluminum induces lipid peroxidation and aggregation of human blood platelets. Braz J Med Biol Res 30:599–604

    PubMed  CAS  Google Scholar 

  • Neiva TJC, Benedetti AL, Tanaka SMCN, Santos JI, D’Amico EA (2002) Determination of serum aluminum, platelet aggregation and lipid peroxidation in hemodialyzed patients. Braz J Med Biol Res 35:345–350

    PubMed  CAS  Google Scholar 

  • Nicholsosn JW, Czarnecka B (2009) Role of aluminum in glass-ionomer dental cements and its biological effects. J Biomater Appl 24:293–308

    Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(suppl 1):133–138

    PubMed  CAS  Google Scholar 

  • Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B (2008) Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178:160–166

    PubMed  CAS  Google Scholar 

  • Oteiza PI, Mackenzie GG, Verstraeten V (2004) Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspect Med 25:103–115

    CAS  Google Scholar 

  • Pai SM, Melethil S (1989) Kinetics of aluminum in rats I: dose-dependent elimination from blood after intravenous administration. J Pharm Sci 78:200–202

    PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ (2007) Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog Neurobiol 83:363–374

    PubMed  CAS  Google Scholar 

  • Pandya JD, Dave KR, Katyare SS (2004) Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin. Lipids Health Dis 3:13

    PubMed  Google Scholar 

  • Pathak YV, Vanmeeteren R, Dwivedi C (1996) Aluminum polymeric implants: in vitro-in vivo evaluations. J Biomater Appl 11:62–75

    PubMed  CAS  Google Scholar 

  • Peng JH, Xu ZC, Xu ZX, Parker JC Jr, Friedlander ER, Tang JP, Melethil S (1992) Aluminum-induced acute cholinergic neurotoxicity in rat. Mol Chem Neuropathol 17:79–89

    PubMed  CAS  Google Scholar 

  • Popescu BO, Toescu EC, Popescu LM, Baienaru O, Muresanu DF, Schuitzberg M, Boqdanovic N (2009) Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 283:99–106

    PubMed  CAS  Google Scholar 

  • Praticò D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16:1138–1140

    PubMed  Google Scholar 

  • Prolo P, Chiappelli F, Grasso E, Rosso MG, Neagos N, Dovio A, Sartori ML, Peroti P, Fanto F, Civita M, Fiorucci A, Villanueva P, Angeli A (2007) Aluminum blunts the proliferative response and increases apoptosis of cultured human cells: putative relationship to Alzheimer’s disease. Bioinformation 2:24–27

    PubMed  Google Scholar 

  • Rebai O, Djebli NE (2008) Chronic exposure to aluminum chloride in mice: exploratory behaviors and spatial learning. Adv Biol Res 2:26–33

    Google Scholar 

  • Rendu F, Lebet M, Tenza D, Toledano-Levy S (1990) How does fluoroaluminate activate human platelets? Biochem J 265:343–349

    PubMed  CAS  Google Scholar 

  • Roberts E (1986) Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates. Neurobiol Aging 7:561–567

    PubMed  CAS  Google Scholar 

  • Sacco RL (2005) Pathogenesis, classification and epidemiology of cerebrovascular disease. In: Rowland LP (ed) Merritt’s neurology. Lippincott Williams and Wilkins, Philadelphia, pp 275–290

    Google Scholar 

  • Sánchez-Iglesias S, Méndez-Alvarez E, Iglesias-González J, Muñoz-Patiño A, Sánchez-Sellero I, Labandeira-García JL, Soto-Otero R (2009) Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson’s disease. J Neurochem 109:879–888

    PubMed  Google Scholar 

  • Sarin S, Gupta V, Gill KD (1997) Alterations in lipid composition and neuronal injury in primates following chronic aluminium exposure. Biol Trace Elem Res 59:133–143

    PubMed  CAS  Google Scholar 

  • Satoh E, Yasuda I, Yamada T, Suzuki Y, Ohyashiki T (2007) Involvement of NO generation in aluminum-induced cell death. Biol Pharm Bull 30:1390–1394

    PubMed  CAS  Google Scholar 

  • Savory J, Herman MM, Ghribi O (2003) Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem 97:151–154

    PubMed  CAS  Google Scholar 

  • Schetinger MRC, Mrosch VM, Bohrer D (2002) Aluminum: interaction with nucleotides and nucleosides and analytical aspects of its determination. In: Roesky HW, Atwood DA (eds) Group 13 Chemistry II biological aspects of aluminum, Structure & bonding. Springer, Berlin, pp 99–132

    Google Scholar 

  • Serpa RFB, de Jesus EFO, Anjos MJ, do Carmo MGT, Moreira S, Rocha MS, Martinez AMB, Lopes RT (2006) Elemental concentration analysis in brain structures from young, adult and old Wistar rats by total reflection X-ray fluorescence with synchrotron radiation. Spectrochim Acta B 61:1205–1209

    Google Scholar 

  • Shati AA, Elsaid FG, Hafez EE (2011) Biochemical and molecular aspects of aluminium chloride-induced neurotoxicity in mice and the protective role of Crocus sativus L. extraction and honey syrup. Neuroscience 175:66–74

    PubMed  CAS  Google Scholar 

  • Shaw CA, Petrik MS (2009) Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem 103:1555–1562

    PubMed  CAS  Google Scholar 

  • Sheldon AL, Robinson MR (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    PubMed  CAS  Google Scholar 

  • Shimizu H, Mori T, Koyama M, Sekiya M, Ooami HA (1994) Correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects. Nippon Ronen Igakkai Zasshi 31:950–960

    PubMed  CAS  Google Scholar 

  • Silva VS, Duarte AI, Rego AC, Oliveira CR, Gonclaves PP (2005) Effect of chronic exposure to aluminum on isoform expression and activity of rat (Na+/K+)ATPase. Toxicol Sci 88:485–494

    PubMed  CAS  Google Scholar 

  • Sivak O, Darlington J, Gershkovich P, Constantinides PP, Wasan KM (2009) Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet. Lipids Health Dis 8:30

    PubMed  Google Scholar 

  • Song Y, Xue Y, Liu X, Wang P, Liu L (2008) Effects of acute exposure to aluminum on blood-brain barrier and the protection of zinc. Neurosci Lett 445:42–46

    PubMed  CAS  Google Scholar 

  • Stanica RI, Winters CA, Pivovarova NB, Andrews SB (2010) Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs CA3 hippocampal neurons. Neurobiol Dis 37:403–411

    Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    PubMed  CAS  Google Scholar 

  • Stevanović ID, Jovanović MD, Jelenković A, Ninković M, Đukić M, Stojanović I, Čolić M (2009a) The effect of inhibition of nitric oxide synthase on aluminium-induced toxicity in the rat brain. Gen Physiol Biophys 28:235–242, Special Issue

    PubMed  Google Scholar 

  • Stevanović I, Jovanović M, Jelenković A, Čolić M, Ninković M (2009b) Effects of various nitric oxide synthase inhibitors on AlCl3 -induced neuronal injury in rats. J Serb Chem Soc 74:503–511

    Google Scholar 

  • Stevanović I, Jovanović M, Jelenković A, Čolić M, Ninković M (2009c) Effects of L-NAME, a non-specific nitric oxide synthase inhibitor, on AlCl3-induced toxicity in the rat forebrain cortex. J Vet Sci 10:15–22

    PubMed  Google Scholar 

  • Stevanović ID, Jovanović MD, Čolić M, Jelenković A, Mihajlović R, Stojanović I, Ninković M (2010) The effect of aminoguanidine, an inducible nitric oxide synthase inhibitor, on AlCl3 toxicity in the rat hippocampus. Arch Biol Sci 62:981–991

    Google Scholar 

  • Swegert CV, Dave KR, Katyare SS (1999) Effect of aluminum-induced Alzheimer’s like condition on oxidative energy metabolism in rat liver, brain and heart metochondria. Mech Ageing Dev 112:27–42

    PubMed  CAS  Google Scholar 

  • Szutowicz A, Bielarczyk H, Kisielevski Y, Jankowska A, Madziar B, Tomaszewicz M (1998) Effects of aluminum and calcium on acetyl-CoA metabolism in rat brain mitochondria. J Neurochem 71:2447–2453

    PubMed  CAS  Google Scholar 

  • Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598

    PubMed  CAS  Google Scholar 

  • Tomljenovic L, Shaw CA (2011) Aluminum vaccine adjuvants: are they safe? Curr Med Chem 18:2630–2637

    PubMed  CAS  Google Scholar 

  • Trapp GA (1986) Interaction of aluminum with cofactors, enzymes, and other proteins. Kidney Int Suppl 18:S12–S16

    PubMed  CAS  Google Scholar 

  • Uemura E, Lartius RK, Martens C (1993) Aluminum induces neurite elongation and sprouting in cultured hippocampal neurons. J Geriatr Pshyciatry Neurol 6:239–244

    CAS  Google Scholar 

  • Vittori D, Garbossa G, Lafourcade C, Perez G, Nesse A (2002) Human erythroid cells are affected by aluminium. Alteration of membrane band 3 protein. Biochim Biophys Acta 1558:142–150

    PubMed  CAS  Google Scholar 

  • Vittori D, Pregi N, Pérez G, Garbossa G, Nesse A (2005) The distinct erythropoietin functions that promote cell survival and proliferation are affected by aluminum exposure through mechanisms involving erythropoietin receptor. Biochim Biophys Acta 1743:29–36

    PubMed  CAS  Google Scholar 

  • Walton JR (2010) Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer’s disease. J Alzheimers Dis 22:65–72

    PubMed  CAS  Google Scholar 

  • Warlow C (2001) Stroke, transient ischemic attacks, and intracranial venous thrombosis. In: Donaghy M (ed) Brain’s disease of the nervous system, 11th edn. Oxford University Press, Oxford, pp 775–896

    Google Scholar 

  • Wigren M, Bengtsson E, Dunér P, Olofsson K, Björkbacka H, Bengtsson E, Fredrikson GN, Nilsson J (2009) Atheroprotective effects of alum are associated with capture of oxidized LDL antigens and activation of regulatory T cells. Circ Res 104:e62–e70

    PubMed  CAS  Google Scholar 

  • Won SJ, Kin DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86

    PubMed  CAS  Google Scholar 

  • Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6:11

    PubMed  Google Scholar 

  • Xu Z, Pai SM, Melethil S (1991) Kinetics of aluminum in rats II: dose-dependent urinary and biliary excretion. J Pharm Sci 80:946–951

    PubMed  CAS  Google Scholar 

  • Yasui M, Yano I, Ota K, Oshima A (1990) Calcium, phosphorus and aluminium concentrations in the central nervous system, liver and kidney of rabbits with experimental atherosclerosis: preventive effects of vinpocetine on the deposition of these elements. J Int Med Res 18:142–152

    PubMed  CAS  Google Scholar 

  • Yellamma K, Saraswathamma S, Nirmala Kumari B (2010) Cholinergic system under aluminium toxicity in rat brain. Toxicol Int 17:106–112

    PubMed  CAS  Google Scholar 

  • Yi M, Yi H, Li H, Wu L (2010) Aluminum induces chromosome aberrations, micronuclei and cell cycle dysfunction in root cells of Vicia faba. Environ Toxicol 25:124–129

    PubMed  CAS  Google Scholar 

  • Yokel RA (2002a) Aluminum chelation principles and recent advances. Coord Chem Rev 228:97–113

    CAS  Google Scholar 

  • Yokel RA (2002b) Brain uptake, retention and efflux of aluminum and manganese. Environ Health Perspect 110(suppl 5):699–704

    PubMed  CAS  Google Scholar 

  • Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253

    PubMed  Google Scholar 

  • Yokel RA, McNamara PJ (2001) Aluminum toxicokinetics: an updated mini review. Pharmacol Toxicol 88:159–167

    PubMed  CAS  Google Scholar 

  • Yokel RA, Rhineheimer SS, Sharma P, Elmore D, McNamara PJ (2001) Entry, half-life, and desferrioxamine accelerated clearance of brain aluminum after a single (26)Al exposure. Toxicol Sci 64:77–82

    PubMed  CAS  Google Scholar 

  • Zeller JA, Frahm K, Baron R, Stingele R, Deuschl G (2004) Platelet-leukocyte interaction and platelet activation in migraine: a link to ischemic stroke? J Neurol Neurosurg Psychiatry 75:984–987

    PubMed  CAS  Google Scholar 

  • Zhang B, Nie A, Bai W, Meng Z (2004) Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons. Food Chem Toxicol 42:1453–1462

    PubMed  CAS  Google Scholar 

  • Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, Wang LP, Wang J, Di Gioacchino M, Conti P, Li QY, Niu Q (2008a) How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol 21:107–115

    PubMed  CAS  Google Scholar 

  • Zhang QL, Niu Q, Nie JS, Conti P, Boscolo P (2008b) Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol 21:787–796

    PubMed  CAS  Google Scholar 

  • Zhang QL, Niu Q, Niu PY, Ji XL, Zhang C, Wang L (2010) Novel interventions targeting on apoptosis and necrosis induced by aluminum chloride in neuroblastoma cells. J Biol Regul Homeost Agents 24:137–148

    PubMed  Google Scholar 

  • Zongte Z, Shaini L, Debbarma A, Singh TB, Devi SB, Singh WG (2008) Serum homocysteine levels in cerebrovascular accidents. Indian J Clin Biochem 23:154–157

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasunpriya Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nayak, P. (2012). Conjecturable Role of Aluminum in Pathophysiology of Stroke. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_31

Download citation

Publish with us

Policies and ethics