Skip to main content

The Neurochemical Alterations Associated with Manganese Toxicity

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Manganese (Mn) is an essential metal critical for healthy cellular function; however, exposure to excess environmental Mn can cause systemic and neurological damage. Inhalation of airborne Mn particulate and consumption of Mn-contaminated drinking water are common routes of over-exposure. When Mn-exposure exceeds the capacity of normal Mn removal via the biliary system, ectopic accumulation of this metal can impair the function of several organs, most notably the brain. In the brain, excess Mn is primarily localized within the basal ganglia, where the globus pallidus routinely accumulates the highest concentrations; however, elevated Mn levels also occur in the striatum, substantia nigra, hippocampus, and cortex. Mn accumulation within the basal ganglia impairs neurochemical communication between brain regions, and may result in damage to neurons and glial cells. Mn-induced neurochemical changes have been linked with reduced function of dopamine, glutamate, and γ-aminobutyric acid (GABA) transport and receptor proteins leading to alterations in signal transduction and promotion of an excitotoxic environment which can manifest as an extrapyramidal disorder similar to Parkinson’s disease. This chapter outlines the synaptic changes involved with Mn neurotoxicity, highlighting the influence of excess Mn on dopamine, glutamate, and GABA neurobiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JG, Cooney PT, Erikson KM (2007a) Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environ Toxicol Pharmacol 23:179–184

    Article  PubMed  CAS  Google Scholar 

  • Anderson JG, Cooney PT, Erikson KM (2007b) Brain manganese accumulation is inversely related to γ-amino butyric acid uptake in male and female rats. Toxicol Sci 95(1):188–195

    Article  PubMed  CAS  Google Scholar 

  • Anderson JG, Fordahl SC, Cooney PT, Weaver TL, Colyer CL, Erikson KM (2008) Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. Neurotoxicology 29:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Anderson JG, Fordahl SC, Cooney PT, Weaver TL, Colyer CL, Erikson KM (2009) Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure. Brain Res 1281:1–14

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Google Scholar 

  • Autissier N, Rochette L, Dumas P, Beley A, Loireau A, Bralet J (1982) Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology 24(2):175–182

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A (1984) Manganese and extrapyramidal disorders a critical review and tribute to Dr. George C. Cotzias. Neurotoxicology 5(1):13–35

    PubMed  CAS  Google Scholar 

  • Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Weidemann P, Albrecht J, Reichenback A (2009) Neurochem Int 54:143–160

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E (1978) Increased GABA content in caudate nucleus of rats after chronic manganese chloride administration. J Neurochem 31:551–552

    Article  PubMed  CAS  Google Scholar 

  • Bouchard MF, Sauve S, Barbeau B, Legrand M, Brodeur ME, Bouffard T, Limoges TB, Bellinger DC, Mergler D (2011) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect 119(1):138–143

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ (2004) Neuroimaging in Parkinson’s disease. NeuroRx 1(2):243–254

    Article  PubMed  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120(1):89–94

    Article  PubMed  CAS  Google Scholar 

  • Burton NC, Schneider JS, Syversen T, Guilarte TR (2009) Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain. Toxicol Sci 111(1):131–139

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF, Spahr L, Fontaine S, Layrarques GP (1995) Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metab Brain Dis 10(4):259–267

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Ammassari-Teule M, Gubellini P, Sancesario G, Morello M, Centonze D, Marfia GA, Saulle E, Passino E, Picconi B, Bernardi G (2001) A synaptic mechanism underlying the behavioral abnormalities induced by manganese intoxication. Neurobiol Dis 8:419–432

    Article  PubMed  CAS  Google Scholar 

  • Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced parkinsonism. Neurotoxicology 27:340–346

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Gubellini P, Bernardi G, Calabresi P (2001) Impaired excitatory transmission in the striatum of rats chronically intoxicated with manganese. Exp Neurol 172(2):469–476

    Article  PubMed  CAS  Google Scholar 

  • Chan AWK, Minski MJ, Lim L, Lai JCK (1992) Changes in brain regional manganese and magnesium levels during postnatal development: modulations by chronic manganese administration. Metab Brain Dis 7(1):21–33

    Article  PubMed  CAS  Google Scholar 

  • Chandra SV, Shukla GS (1981) Concentrations of striatal catecholamines in rats given manganese chloride through drinking water. J Neurochem 36(2):683–687

    Article  PubMed  CAS  Google Scholar 

  • Chandra SV, Malhotra KM, Shukla GS (1982) GABAergic neurochemistry in manganese exposed rats. Acta Pharmacol Toxicol (Copenh) 51(5):456–458

    Article  CAS  Google Scholar 

  • Chen KM, Lee JS, McGlothan JL, Furukawa E, Adams RJ, Alexander M, Wong DF, Guilarte TR (2006) Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology 27:229–236

    Article  PubMed  CAS  Google Scholar 

  • Chao XD, Fei F, Fei Z (2010) The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res 35:1224–1230

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Foster A, Lanthorn T (1981) An overview of glutamate as a neurotransmitter. Adv Biochem Psychopharmacol 27:1–27

    PubMed  CAS  Google Scholar 

  • Defazio G, Soleo L, Zefferino R, Livrea P (1996) Manganese toxicity in serumless dissociated mesencephalic and striatal primary culture. Brain Res Bull 40(4):257–262

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Xu Z, Xu B, Tian YW, Deng X, Xin X, Gao J (2009) Excitotoxicity in rat’s brain induced by exposure of manganese and neuroprotective effects of pinacidil and nimodipine. Biol Trace Elem Res 131:143–153

    Article  PubMed  CAS  Google Scholar 

  • Dorman DC, Struve MF, Wong BA, Dye JA, Robertson ID (2006) Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation. Toxicol Sci 92(1):219–227

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45(1):145–151

    Article  PubMed  CAS  Google Scholar 

  • Erikson KM, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23:595–602

    Article  PubMed  CAS  Google Scholar 

  • Erikson KM, Shihabi ZK, Aschner JL, Aschner M (2002) Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biol Trace Elem Res 87:143–156

    Article  PubMed  CAS  Google Scholar 

  • Erikson KM, Dobson AW, Dorman DC, Aschner M (2004) Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ 334–335:409–416

    Article  PubMed  Google Scholar 

  • Erikson KM, John CE, Jones SR, Aschner M (2005) Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol 20(3):390–394

    Article  PubMed  CAS  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M (2008) Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology 29:377–385

    Article  PubMed  CAS  Google Scholar 

  • Eriksson H, Gillberg PG, Aquilonius SM, Dedstrom KG, Heilbronn E (1992) Receptor alterations in manganese intoxicated monkeys. Arch Toxicol 66(5):359–364

    Article  PubMed  CAS  Google Scholar 

  • Fitsanakis VA, Au C, Erikson KM, Aschner M (2006) The effects of manganese on glutamate, dopamine and γ-aminobutyric acid regulation. Neurochem Int 48:426–433

    Article  PubMed  CAS  Google Scholar 

  • Fordahl SC, Anderson JG, Cooney PT, Weaver TL, Colyer CL, Erikson KM (2010) Manganese exposure inhibits the clearance of extracellular GABA and influenced taurine homeostasis in the striatum of developing rats. Neurotoxicology 31:639–646

    Article  PubMed  CAS  Google Scholar 

  • Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63(6):461–468

    Article  PubMed  CAS  Google Scholar 

  • Garcia SJ, Cellein K, Syversen T, Aschner M (2006) A manganese-enhanced diet alters brain metals and transporters in the developing rat. Toxicol Sci 92(2):516–525

    Article  PubMed  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1999) Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 20:445–453

    PubMed  CAS  Google Scholar 

  • Gianutsos G, Murray MT (1982) Alterations in brain dopamine and GABA following inorganic or organic manganese administration. Neurotoxicology 3(3):75–81

    PubMed  CAS  Google Scholar 

  • Guilarte TR, Chen MK, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS (2006) Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 202:381–390

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, Chen MK (2007) Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. Neurotoxicology 28(6):1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Gwiazda RH, Lee D, Sheridan J, Smith DR (2002) Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology 23:69–76

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 22(12):1443–1447

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Weng YH, Lu CS, Chu NS, Yen TC (2003) Dopamine transporter binding in chronic manganese intoxication. Neurology 250(11):1335–1339

    Article  CAS  Google Scholar 

  • Ingersol RT, Montgomery EB Jr, Aposhian HV (1999) Central nervous system toxicity of manganese. II: cocaine or reserpine inhibit manganese concentration in the rat brain. Neurotoxicology 20(2–3):467–476

    Google Scholar 

  • Itoh K, Sakata M, Watanabe M, Aikawa Y, Fujii H (2008) The entry of manganese ions ito the brain is accelerated by the activation of N-methyl-d-aspartate receptors. Neuroscience 154:732–740

    Article  PubMed  CAS  Google Scholar 

  • Kern CH, Smith DR (2011) Preweaning Mn exposure leads to prolonged astrocyte activation and lasting effects of dopaminergic system in adult male rats. Synapse 65:532–544

    Article  PubMed  CAS  Google Scholar 

  • Kern CA, Stanwood GD, Smith DR (2010) Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse 64:363–378

    Article  PubMed  CAS  Google Scholar 

  • Kessler KR, Wunderlich G, Hefter H, Seitz RJ (2003) Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Mov Disord 18(2):217–218

    Article  PubMed  Google Scholar 

  • Kim JW, Kim Y, Cheong HK, Ito K (1998) Manganese induced parkinsonism: a case report. J Korean Med Sci 13:437–439

    PubMed  CAS  Google Scholar 

  • Kim Y, Kim JW, Ito K, Hisanaga N, Cheong HK, Kim KS, Moon Y (1999) Positron emission tomography (PET) in differentiating manganism from idiopathic parkinsonism. J Occup Health 41:91–94

    Article  Google Scholar 

  • Kimura M, Yagi N, Itokawa Y (1978) Effect of subacute manganese feeding on derotonin metabolism in the rat. J Toxicol Environ Health 4(5–6):701–707

    Article  PubMed  CAS  Google Scholar 

  • Lai JC, Lim L, Davison AN (1982) Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin. J Inorg Biochem 17(3):215–225

    Article  PubMed  CAS  Google Scholar 

  • Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG (2005) Protein kinase Cδ is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 313(1):46–55

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Sidoryk M, Jiang H, Yin Z, Aschner M (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110:530–544

    Article  PubMed  CAS  Google Scholar 

  • Lipe GW, Duhart H, Newport GD, Slikker W Jr, Ali SF (1999) Effect of manganese on the concentration of amino acids in different regions of the rat brain. J Environ Sci Health B B34(1):119–132

    CAS  Google Scholar 

  • Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55(2):225–228

    Article  PubMed  CAS  Google Scholar 

  • Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative disease: a theory. Brain Res Rev 45:38–78

    Article  PubMed  CAS  Google Scholar 

  • McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA (2008) Postnatal manganese exposure alters dopamine transporter function in adult rats: potential impact on nonassociative and associative processes. Neuroscience 154:848–860

    Article  PubMed  CAS  Google Scholar 

  • McDougall SA, Der-Ghazarian T, Britt CE, Varela FA, Crawford CA (2011) Postnatal manganese exposure alters the expression of D2L and D2S receptor isoforms: relationship to PKA activity and Akt levels. Synapse 65(7):583–591

    Article  PubMed  CAS  Google Scholar 

  • Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F (1995) GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15(11):7734–7746

    PubMed  CAS  Google Scholar 

  • Mustafa SJ, Chandra SV (1971) Levels of 5-hydroxytryptamie, dopamine and norepinephrine in whole brain of rabbits in chronic manganese toxicity. J Neurochem 18(6):931–933

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Kim K (2008) Abnormal motor function and the expression of striatal dopamine D2 receptors in manganese-treated mice. Biol Pharm Bull 31(10):1894–1897

    Article  PubMed  CAS  Google Scholar 

  • Namima M, Okamoto K, Sakai Y (1982) Taurine acts on presynaptic autoreceptors for GABA in the cerebellum: effects on Ca2+ influx and GABA release. Jpn J Pharmacol 32:746

    Article  PubMed  CAS  Google Scholar 

  • Neff NH, Barrett RE, Costa E (1969) Selective depletion of caudate nucleus dopamine and serotonin during chronic manganese dioxide administration to squirrel monkeys. Experientia 25(11):1140–1141

    Article  PubMed  CAS  Google Scholar 

  • Gilman S (2007) Neurobiology of disease. Elsevier Academic, Burlington, MA

    Google Scholar 

  • Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    PubMed  CAS  Google Scholar 

  • Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11

    Article  PubMed  CAS  Google Scholar 

  • Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4(7):1884–1891

    PubMed  CAS  Google Scholar 

  • Sato K, Betz H, Schloss P (1995) The recombinant GABA transporter GAT1 is downregulated upon activation of protein kinase C. FEBS Lett 375:99–102

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS, Chandra SV (1979) Species variation in manganese induced changes in brain biogenic amines. Toxicol Lett 3(4):249–253

    Article  CAS  Google Scholar 

  • Sriram K, Lin GX, Jefferson AM, Roberts JR, Chapman RS, Chen BT, Soukup JM, Ghio AJ, Antonini JM (2010) Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes. Arch Toxicol 84:521–540

    Article  PubMed  CAS  Google Scholar 

  • Stuve MF, McManus BE, Wong BA, Dorman DC (2007) Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. Am J Ind Med 50:772–778

    Article  Google Scholar 

  • Takeda A, Sotogaku N, Oku N (2002) Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 114:669–674

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Sotogaku N, Oku N (2003) Influence of manganese on the release of neurotransmitters in rat striatum. Brain Res 965:279–282

    Article  PubMed  CAS  Google Scholar 

  • Taquet H, Javoy-Aqid F, Cesselin F, Hamon M, Legrand JC, Aqid Y (1982) Microtopography of methionine-enkephalin, dopamine and noradrenaline in the ventral mesencephalon of human control and parkinsonian brains. Brain Res 235(2):303–314

    Article  PubMed  CAS  Google Scholar 

  • Tracqui A, Tayot J, Kintz P, Alves G, Bosque MA, Mangin P (1995) Determination of manganese in human brain samples. Forensic Sci Int 76:199–203

    Article  PubMed  CAS  Google Scholar 

  • Vacher CM, Gassmann M, Desrayaud S, Challet E, Bradaia A, Hoyer D, Waldmeier P, Kaupmann K, Pevert P, Bettler B (2006) Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice. J Neurochem 97:979–991

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15(11):1382–1402

    Article  PubMed  CAS  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, Lolacono NJ, Cheng Z, Zheng Y, Graziano JH (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129

    PubMed  CAS  Google Scholar 

  • Wedler FC, Ley BW, Grippo AA (1989) Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochem Res 14(11):1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Xu ZF, Deng Y (2010a) Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Exp Toxicol Pathol 62:381–390

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Xu ZF, Deng Y (2010b) Manganese exposure alters the expression of N-methyl-d-aspartate receptor subunit mRNAs and proteins in rat striatum. J Biochem Mol Toxicol 24(1):1–9

    Article  PubMed  Google Scholar 

  • Zhang G, Liu D, He P (1995) Effects of manganese on learnin abilities in school children. Zhonghua Yu Fang Yi Xue Za Zhi 29(3):156–158

    PubMed  CAS  Google Scholar 

  • Zheng W, Ren S, Graziano JH (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res 799:334–342

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D, Hazell AS (2007) NMR spectroscopic analysis of regional brain energy metabolism in manganese neurotoxicity. Glia 55:1610–1617

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Erikson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fordahl, S.C., Erikson, K.M. (2012). The Neurochemical Alterations Associated with Manganese Toxicity. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_27

Download citation

Publish with us

Policies and ethics