Skip to main content

The Impact of Extracellular Potassium Accumulation in Stroke

  • Chapter
  • First Online:
Metal Ion in Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 1036 Accesses

Abstract

The involvement of the potassium ion and its movements in stroke is reviewed. There are two potassium pools which do not mix easily: serum potassium, which is subject to dietary fluctuations and potassium in the parenchyma, which is protected from outside fluctuations by the blood–brain barrier, but is subject to internal shifts driven by neuronal activity. Dietary increase in potassium is reducing stroke risk probably due to action on radical oxygen species. The blood–brain barrier has a very low permeability to potassium and this does not change in stroke. In the case brain edema develops there is solute transfer driven by the bumetanide-sensitive 2Na-K-Cl carrier in endothelial cells. In the parenchyma, extracellular potassium exhibits massive shifts which are indicative of the health of the ischemic tissue, especially in focal stroke. Spreading depression waves develop in focal ischemia with potassium shifts the main indicator. Spreading depression is a double-edged sword: it damages the penumbra irreversibly. In healthy tissue it has a beneficial effect and leads to pre-ischemic conditioning. This phenomenon is based on the protective effect of reactive astrocytes on ailing neurons in the first phase after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman WJ Jr, Fitzhugh R (1975) Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Fed Proc 34(5):1322–1329

    PubMed  Google Scholar 

  • Balestrino M (1995) Pathophysiology of anoxic depolarization: new findings and a working hypothesis. J Neurosci Methods 59(1):99–103

    Article  PubMed  CAS  Google Scholar 

  • Balestrino M, Aitken PG, Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res 377(2):229–239

    Article  PubMed  CAS  Google Scholar 

  • Canas F, Terepka AR, Neuman WF (1969) Potassium and milieu interieur of bone. Am J Physiol 217(1):117–120

    PubMed  CAS  Google Scholar 

  • Clay JR (2005) Axonal excitability revisited. Prog Biophys Mol Biol 88(1):59–90

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87(1):87–102

    PubMed  Google Scholar 

  • D’Elia L, Barba G, Cappuccio FP, Strazzullo P (2011) Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol 57(10):1210–1219

    Article  PubMed  Google Scholar 

  • Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17(4):439–447

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol 131(2):341–376

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Mies G, Bonnekoh P, Banati R, Iijima T, Kreutzberg GW et al (1993) Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol 3(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Hablitz JJ, Lundervold A (1981) Hippocampal excitability and changes in extracellular potassium. Exp Neurol 71(2):410–420

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65(1):101–148

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Lund-Andersen H, Crone C (1977) K+-permeability of the blood-brain barrier, investigated by aid of a K+-sensitive microelectrode. Acta Physiol Scand 101(4):438–445

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120(2):231–249

    Article  PubMed  CAS  Google Scholar 

  • Hom S, Egleton RD, Huber JD, Davis TP (2001) Effect of reduced flow on blood-brain barrier transport systems. Brain Res 890(1):38–48

    Article  PubMed  CAS  Google Scholar 

  • Ishimitsu T, Tobian L, Sugimoto K, Everson T (1996) High potassium diets reduce vascular and plasma lipid peroxides in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 18(5):659–673

    Article  PubMed  CAS  Google Scholar 

  • Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265

    Article  CAS  Google Scholar 

  • Keep RF, Ennis SR, Beer ME, Betz AL (1995) Developmental changes in blood-brain barrier potassium permeability in the rat: relation to brain growth. J Physiol 488(Pt 2):439–448

    PubMed  CAS  Google Scholar 

  • Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T et al (2008) Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension 51(2):225–231

    Article  PubMed  CAS  Google Scholar 

  • Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3(11):1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Kratz A, Ferraro M, Sluss PM, Lewandrowski KB (2004) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values. N Engl J Med 351(15):1548–1563

    Article  PubMed  CAS  Google Scholar 

  • Kreisman NR, Smith ML (1993) Potassium-induced changes in excitability in the hippocampal CA1 region of immature and adult rats. Brain Res Dev Brain Res 76(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Largo C, Cuevas P, Somjen GG, Martin del Rio R, Herreras O (1996) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci 16(3):1219–1229

    PubMed  CAS  Google Scholar 

  • Leech CA, Stanfield PR (1981) Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol 319:295–309

    PubMed  CAS  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC et al (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28(3):468–481

    Article  PubMed  Google Scholar 

  • Ma G, Mamaril JL, Young DB (2000a) Increased potassium concentration inhibits stimulation of vascular smooth muscle proliferation by PDGF-BB and bFGF. Am J Hypertens 13(10):1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Ma G, Mason DP, Young DB (2000b) Inhibition of vascular smooth muscle cell migration by elevation of extracellular potassium concentration. Hypertension 35(4):948–951

    Article  PubMed  CAS  Google Scholar 

  • Matsushima K, Hogan MJ, Hakim AM (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16(2):221–226

    Article  PubMed  CAS  Google Scholar 

  • McCabe RD, Bakarich MA, Srivastava K, Young DB (1994) Potassium inhibits free radical formation. Hypertension 24(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4(6):709–711

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M (1988) Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 77(2):81–101

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M (1996) Spreading depression as a contributor to ischemic brain damage. Adv Neurol 71:75–83, discussion: 4

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Diemer NH (1987) Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Jakobsen J, Diemer NH (1988) Autoradiographic determination of cerebral glucose content, blood flow, and glucose utilization in focal ischemia of the rat brain: influence of the plasma glucose concentration. J Cereb Blood Flow Metab 8(1):100–108

    Article  PubMed  CAS  Google Scholar 

  • Phillips JM, Nicholson C (1979) Anion permeability in spreading depression investigated with ion-sensitive microelectrodes. Brain Res 173(3):567–571

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR, Walz W, Davis PK, Carlini WG (1992) Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 12(4):593–602

    Article  PubMed  CAS  Google Scholar 

  • Sick TJ, Rosenthal M, LaManna JC, Lutz PL (1982) Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol 243(3):R281–R288

    PubMed  CAS  Google Scholar 

  • Smith QR, Rapoport SI (1986) Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem 46(6):1732–1742

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8(3):254–267

    PubMed  CAS  Google Scholar 

  • Somjen GG (2004) Ions in the brain: normal function, seizures, and stroke. Oxford University Press, Oxford

    Google Scholar 

  • Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN (1992) Mechanism of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharmacol 70 Suppl: S248–S254

    Google Scholar 

  • Sykova E (1991) Ionic and volume changes in neuronal microenvironment. Physiol Res 40(2):213–222

    PubMed  CAS  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    Article  PubMed  CAS  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300

    Article  PubMed  CAS  Google Scholar 

  • Walz W, Wuttke WA (1999) Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res 56(6):595–603

    Article  PubMed  CAS  Google Scholar 

  • Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D et al (1997) Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277(20):1624–1632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors’ own experimental work is currently supported by an operating grant from the Heart and Stroke Foundation of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Walz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walz, W. (2012). The Impact of Extracellular Potassium Accumulation in Stroke. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_17

Download citation

Publish with us

Policies and ethics