NanoBiosensing pp 207-239 | Cite as

Electrochemical Biosensing Based on Carbon Nanotubes

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Since their discovery, carbon nanotubes (CNTs) have been extensively investigated as essential platforms in constructing electrochemical biosensors. CNTs can be classified into two basic varieties: single-wall carbon nanotubes (SWCNTs), which are a single layer of graphene sheet rolled into cylindrical tubes, and multiwall carbon nanotubes (MWCNTs) comprised of multiple layers of concentric cylinders with a spacing of about 0.34 nm between the adjacent cyclinders (Fig. 7.1). The lengths of the nanotubes can range from several hundred nanometers to several micrometers, and the diameters from 0.2–2 nm for SWCNTs and from 2 to 100 nm for MWCNTs [1]. CNT synthesis techniques can be classified into three major categories: laser ablation, catalytic arc discharge, and chemical vapor deposition [2]. Due to the diameters being similar to or smaller than those of individual biomolecules, CNTs are expected to serve as high-performance electrical conduits for interfacing with biological systems.

Keywords

Surfactant Magnetite NADH Cerium Ferritin 

References

  1. 1.
    Kim, S.N., Rusling, J.F., Papadimitrakopoulos, F.: Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007)CrossRefGoogle Scholar
  2. 2.
    Rao, C.N.R., Govindaraj, A.: Carbon nanotubes from organometallic precursors. Acc. Chem. Res. 35, 998–1007 (2002)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Lin, Y.H.: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal. Chem. 27, 619–626 (2008)CrossRefGoogle Scholar
  4. 4.
    Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)CrossRefGoogle Scholar
  5. 5.
    Yang, R.H., Tang, Z.W., Yan, J.L., et al.: Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal. Chem. 80, 7408–7413 (2008)CrossRefGoogle Scholar
  6. 6.
    Mazzei, F., Favero, G., Frasconi, M., et al.: Electron-transfer kinetics of microperoxidase-11 covalently immobilised onto the surface of multi-walled carbon nanotubes by reactive landing of mass-selected ions. Chem. Eur. J. 15, 7359–7367 (2009)CrossRefGoogle Scholar
  7. 7.
    Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X.M., et al.: Noncovalent functionalization of carbon nanotubes by fluorescein−polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129, 2448–2449 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., et al.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. 100, 4984–4989 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, R.J., Zhang, Y.G., Wang, D.W., et al.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001)CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)CrossRefGoogle Scholar
  11. 11.
    Ehli, C., Rahman, G.M.A., Jux, N., et al.: Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J. Am. Chem. Soc. 128, 11222–11231 (2006)CrossRefGoogle Scholar
  12. 12.
    Hasobe, T., Fukuzumi, S., Kamat, P.V.: Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005)CrossRefGoogle Scholar
  13. 13.
    Tu, W.W., Lei, J.P., Ju, H.X.: Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive biosensing of trichloroacetic acid. Chem. Eur. J. 15, 779–784 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Musameh, M., Lin, Y.H.: Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408–2409 (2003)CrossRefGoogle Scholar
  15. 15.
    Lyons, M.E.G., Keeley, G.P., et al.: Immobilized enzyme – single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chem. Commun. 22, 2529–2531 (2008)CrossRefGoogle Scholar
  16. 16.
    Hu, P., Huang, C.Z., Li, Y.F., et al.: Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization. Anal. Chem. 80, 1819–1823 (2008)CrossRefGoogle Scholar
  17. 17.
    Zheng, M., Jagota, A., Semke, E.D., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)CrossRefGoogle Scholar
  18. 18.
    Zhao, W.A., Gao, Y., Brook, M.A., et al.: Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification. Chem. Commun. 34, 3582–3584 (2006)CrossRefGoogle Scholar
  19. 19.
    Ma, Y.F., Ali, S.R., Dodoo, A.S., et al.: Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J. Phys. Chem. B 110, 16359–16365 (2006)CrossRefGoogle Scholar
  20. 20.
    Wang, H.S., Li, T.H., Jia, W.L., et al.: Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens. Bioelectron. 22, 664–669 (2006)CrossRefGoogle Scholar
  21. 21.
    Joshi, P.P., Merchant, S.A., Wang, Y.D., et al.: Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem. 77, 3183–3188 (2005)CrossRefGoogle Scholar
  22. 22.
    Tsai, T.W., Heckert, G., Neves, L.F., et al.: Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal. Chem. 81, 7917–7925 (2009)CrossRefGoogle Scholar
  23. 23.
    Cui, H.F., Ye, J.S., Zhang, W.D., et al.: Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Biosens. Bioelectron. 24, 1723–1729 (2009)CrossRefGoogle Scholar
  24. 24.
    Luo, X.L., Xu, J.J., Wang, J.L., et al.: Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, M.G., Mullens, C., Gorski, W.: Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Anal. Chem. 79, 2446–2450 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, M.G., Smith, A., Gorski, W.: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004)CrossRefGoogle Scholar
  27. 27.
    Kandimalla, V.B., Ju, H.X.: Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem. Eur. J. 12, 1074–1080 (2006)CrossRefGoogle Scholar
  28. 28.
    Liu, Z., Winters, M., Holodniy, M., et al.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)CrossRefGoogle Scholar
  29. 29.
    Richard, C., Balavoine, F., Schultz, P., et al.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003)CrossRefGoogle Scholar
  30. 30.
    Niyogi, S., Densmore, C.G., Doorn, S.K.: Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 1144–1153 (2009)CrossRefGoogle Scholar
  31. 31.
    Arnold, M.S., Guler, M.O., Hersam, M.C., et al.: Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21, 4705–4709 (2005)CrossRefGoogle Scholar
  32. 32.
    Kandimalla, V.B., Tripathi, V.S., Ju, H.X.: A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 27, 1167–1174 (2006)CrossRefGoogle Scholar
  33. 33.
    Tripathi, V.S., Kandimalla, V.B., Ju, H.X.: Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens. Bioelectron. 21, 1529–1535 (2006)CrossRefGoogle Scholar
  34. 34.
    Yang, J., Jiao, K., Yang, T.: A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment. Anal. Bioanal. Chem. 389, 913–921 (2007)CrossRefGoogle Scholar
  35. 35.
    Xiao, F., Zhao, F.Q., Mei, D.P., et al.: Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M  =  Ru, Pd and Au) nanoparticles on carbon nanotubes – ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009)CrossRefGoogle Scholar
  36. 36.
    Meng, L., Jin, J., Yang, G.X., et al.: Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 81, 7271–7280 (2009)CrossRefGoogle Scholar
  37. 37.
    Lin, X.Q., Li, Y.X.: A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens. Bioelectron. 22, 253–259 (2006)CrossRefGoogle Scholar
  38. 38.
    Khalap, V.R., Sheps, T., Kane, A.A., et al.: Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett. 10, 896–901 (2010)CrossRefGoogle Scholar
  39. 39.
    Zhang, H., Cui, H.: Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25, 2604–2612 (2009)CrossRefGoogle Scholar
  40. 40.
    Yang, M.H., Yang, Y., Yang, H.F., et al.: Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials 27, 246–255 (2006)CrossRefGoogle Scholar
  41. 41.
    Lee, S.W., Kim, B.S., Chen, S., et al.: Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009)CrossRefGoogle Scholar
  42. 42.
    Wang, Y.D., Joshi, P.P., Hobbs, K.L., et al.: Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22, 9776–9783 (2006)CrossRefGoogle Scholar
  43. 43.
    Hamilton, C.E., Ogrin, D., McJilton, L., et al.: Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters. Dalton Trans. 22, 2937–2944 (2008)CrossRefGoogle Scholar
  44. 44.
    Holzinger, M., Vostrowsky, O., Hirsch, A., et al.: Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40, 4002–4005 (2001)CrossRefGoogle Scholar
  45. 45.
    Bahr, J.L., Yang, J., Kosynkin, D.V., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001)CrossRefGoogle Scholar
  46. 46.
    Ju, S.Y., Papadimitrakopoulos, P.: Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 655–664 (2008)CrossRefGoogle Scholar
  47. 47.
    Williams, K.A., Veenhuizen, P.T.M., de la Torre, B.G., et al.: Carbon nanotubes with DNA recognition. Nature 420, 761 (2002)CrossRefGoogle Scholar
  48. 48.
    Xiang, L., Zhang, Z.N., Yu, P., et al.: In situ cationic ring-opening polymerization and quaternization reactions to confine ferricyanide onto carbon nanotubes: a general approach to development of integrative nanostructured electrochemical biosensors. Anal. Chem. 80, 6587–6593 (2008)CrossRefGoogle Scholar
  49. 49.
    Gong, K.P., Du, F., Xia, Z.H., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)CrossRefGoogle Scholar
  50. 50.
    Carrero-Sánchez, J.C., Elías, A.L., Mancilla, R., et al.: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609–1616 (2006)CrossRefGoogle Scholar
  51. 51.
    Tu, W.W., Lei, J.P., Jian, G.Q., et al.: Noncovalent axial assembly of picket-fence porphyrin on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing. Chem. Eur. J. 16, 4120–4126 (2010)CrossRefGoogle Scholar
  52. 52.
    Alonso-Lomillo, M.A., Rüdiger, O., Maroto-Valiente, A., et al.: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7, 1603–1608 (2007)CrossRefGoogle Scholar
  53. 53.
    Cheng, W., Ding, L., Lei, J.P., et al.: Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal. Chem. 80, 3867–3872 (2008)CrossRefGoogle Scholar
  54. 54.
    Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43, 2113–2117 (2004)CrossRefGoogle Scholar
  55. 55.
    Zhang, Y.J., Li, J., Shen, Y.F., et al.: Poly-L-lysine functionalization of single-walled carbon nanotubes. J. Phys. Chem. B 108, 15343–15346 (2004)CrossRefGoogle Scholar
  56. 56.
    Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)CrossRefGoogle Scholar
  57. 57.
    Aziz, M.A., Park, S., Jon, S., et al.: Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)–silane copolymer. Chem. Commun. 25, 2610–2612 (2007)CrossRefGoogle Scholar
  58. 58.
    Yu, X., Munge, B., Patel, V., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)CrossRefGoogle Scholar
  59. 59.
    Lai, G.S., Yan, F., Ju, H.X.: Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81, 9730–9736 (2009)CrossRefGoogle Scholar
  60. 60.
    Wu, Z., Zhen, Z., Jiang, J.H., et al.: Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J. Am. Chem. Soc. 131, 12325–12332 (2009)CrossRefGoogle Scholar
  61. 61.
    Nie, H.G., Liu, S.J., Yu, R.Q., et al.: Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew. Chem. Int. Ed. 48, 9862–9866 (2009)CrossRefGoogle Scholar
  62. 62.
    Zhang, M.G., Gorski, W.: Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 127, 2058–2059 (2005)CrossRefGoogle Scholar
  63. 63.
    Ye, Y.K., Ju, H.X.: Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron. 21, 735–741 (2005)CrossRefGoogle Scholar
  64. 64.
    Wang, S.G., Wang, R.L., Sellin, P.J., et al.: DNA biosensors based on self-assembled carbon nanotubes. Biochem. Biophys. Res. Commun. 325, 1433–1437 (2004)CrossRefGoogle Scholar
  65. 65.
    Zhang, Y., Kim, H., Heller, A.: Enzyme-amplified amperometric detection of 3000 copies of DNA in a 10-μL droplet at 0.5 fM concentration. Anal. Chem. 75, 3267–3269 (2003)CrossRefGoogle Scholar
  66. 66.
    Munge, B., Liu, G.D., Collins, G., et al.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)CrossRefGoogle Scholar
  67. 67.
    Yang, T., Zhou, N., Zhang, Y.C.: Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens. Bioelectron. 24, 2165–2170 (2009)CrossRefGoogle Scholar
  68. 68.
    Zhang, W., Yang, T., Zhuang, X.M., et al.: An ionic liquid supported CeO2 nanoshuttles – carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens. Bioelectron. 24, 2417–2422 (2009)CrossRefGoogle Scholar
  69. 69.
    Mahmoud, K.A., Hrapovic, S., Luong, J.H.T.: Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano 2, 1051–1057 (2008)CrossRefGoogle Scholar
  70. 70.
    Viswanathan, S., Wu, L.C., Huang, M.R., et al.: Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem. 78, 1115–1121 (2006)CrossRefGoogle Scholar
  71. 71.
    Viswanathan, S., Rani, C., Anand, A.V., et al.: Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens. Bioelectron. 24, 1984–1989 (2009)CrossRefGoogle Scholar
  72. 72.
    Ly, S.Y., Cho, N.S.: Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor. J. Clin. Virol. 44, 43–47 (2009)CrossRefGoogle Scholar
  73. 73.
    Drouvalakis, K.A., Bangsaruntip, S., Hueber, W., et al.: Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens. Bioelectron. 23, 1413–1421 (2008)CrossRefGoogle Scholar
  74. 74.
    Okuno, J., Maehashi, K., Kerman, K., et al.: Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron. 22, 2377–2381 (2007)CrossRefGoogle Scholar
  75. 75.
    Kim, J.P., Lee, B.Y., Lee, J., et al.: Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 3372–3378 (2009)CrossRefGoogle Scholar
  76. 76.
    Chikkaveeraiah, B.V., Bhirde, A., Malhotra, R.: Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem. 81, 9129–9134 (2009)CrossRefGoogle Scholar
  77. 77.
    Sudibya, H.G., Ma, J.M., Dong, X.C., et al.: Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 48, 2723–2726 (2009)CrossRefGoogle Scholar
  78. 78.
    Huang, Y.X., Sudibya, H.G., Fu, D.L., et al.: Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosens. Bioelectron. 24, 2716–2720 (2009)CrossRefGoogle Scholar
  79. 79.
    Cheng, W., Ding, L., Ding, S.J., et al.: A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 48, 6465–6468 (2009)CrossRefGoogle Scholar
  80. 80.
    Ishikawa, F.N., Stauffer, B., Caron, D.A., et al.: Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors. Biosens. Bioelectron. 24, 2967–2972 (2009)CrossRefGoogle Scholar
  81. 81.
    Galanzha, E.I., Shashkov, E.V., Kelly, T., et al.: In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009)CrossRefGoogle Scholar
  82. 82.
    Tu, W.W., Lei, J.P., Ju, H.X.: Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem. Commun. 10, 766–769 (2008)CrossRefGoogle Scholar
  83. 83.
    Du, F.Y., Huang, W.H., Shi, Y.X., et al.: Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosens. Bioelectron. 24, 415–421 (2008)CrossRefGoogle Scholar
  84. 84.
    Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)CrossRefGoogle Scholar
  85. 85.
    Wang, Z.Y., Liu, S.N., Wu, P., et al.: Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem 81, 1638–1645 (2009)CrossRefGoogle Scholar
  86. 86.
    Shan, C.S., Yang, H.F., Song, J.F., et al.: Direct electrochemistry of glucose oxidase and biosensing for glucose based on grapheme. Anal. Chem. 81, 2378–2382 (2009)CrossRefGoogle Scholar
  87. 87.
    Liu, Z., Wang, J., Xie, D.H., et al.: Polyaniline-coated Fe3O4 nanoparticle – carbon-nanotube composite and its application in electrochemical biosensing. Small 4, 462–466 (2008)CrossRefGoogle Scholar
  88. 88.
    Rakhi, R.B., Sethupathi, K., Ramaprabhu, S.: A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B 113, 3190–3194 (2009)CrossRefGoogle Scholar
  89. 89.
    Hrapovic, S., Liu, Y.L., Male, K.B., et al.: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083–1088 (2004)CrossRefGoogle Scholar
  90. 90.
    Liu, Q., Lu, X.B., Li, J., et al.: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 22, 3203–3209 (2007)CrossRefGoogle Scholar
  91. 91.
    Jeykumari, D.R.S., Narayanan, S.S.: Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens. Bioelectron. 23, 1686–1693 (2008)CrossRefGoogle Scholar
  92. 92.
    Zhu, L.D., Yang, R.L., Zhai, J.L., et al.: Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 23, 528–535 (2007)CrossRefGoogle Scholar
  93. 93.
    Liu, C.Y., Hu, J.M.: Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron. 24, 2149–2154 (2009)CrossRefGoogle Scholar
  94. 94.
    Zou, Y.J., Sun, L.X., Xu, F.: Biosensor based on polyaniline – Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens. Bioelectron. 22, 2669–2674 (2007)CrossRefGoogle Scholar
  95. 95.
    Kachoosangi, R.T., Musameh, M.M., Abu-Yousef, I., et al.: Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem. 81, 435–442 (2009)CrossRefGoogle Scholar
  96. 96.
    Nossol, E., Zarbin, A.J.G.A.: Simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv. Funct. Mater. 19, 3980–3986 (2009)CrossRefGoogle Scholar
  97. 97.
    Beitollahi, H., Karimi-Maleh, H., Khabazzadeh, H.: Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl- 3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 80, 9848–9851 (2008)CrossRefGoogle Scholar
  98. 98.
    Heller, I., Männik, J., Lemay, S.G., et al.: Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. Nano Lett. 9, 377–382 (2009)CrossRefGoogle Scholar
  99. 99.
    Heller, I., Janssens, A.M., Männik, J., et al.: Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008)CrossRefGoogle Scholar
  100. 100.
    Hecht, D.S., Ramirez, R.J.A., Briman, M., et al.: Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett. 6, 2031–2036 (2006)CrossRefGoogle Scholar
  101. 101.
    Chen, R.J., Choi, H.C., Bangsaruntip, S., et al.: An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126, 1563–1568 (2004)CrossRefGoogle Scholar
  102. 102.
    Besteman, K., Lee, J.O., Wiertz, F.G.M., et al.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003)CrossRefGoogle Scholar
  103. 103.
    Boussaad, S., Diner, B.A., Fan, J.: Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing. J. Am. Chem. Soc. 130, 3780–3787 (2008)CrossRefGoogle Scholar
  104. 104.
    Byon, H.R., Choi, H.C.: Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 128, 2188–2189 (2006)CrossRefGoogle Scholar
  105. 105.
    Zhang, Y.B., Kanungo, M., Ho, A.J., et al.: Functionalized carbon nanotubes for detecting viral proteins. Nano Lett. 7, 3086–3091 (2007)CrossRefGoogle Scholar
  106. 106.
    Kim, J.P., Lee, B.Y., Hong, S., et al.: Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 381, 193–198 (2008)CrossRefGoogle Scholar
  107. 107.
    Maehashi, K., Katsura, T., Kerman, K., et al.: Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79, 782–787 (2007)CrossRefGoogle Scholar
  108. 108.
    Martínez, M.T., Tseng, Y.C., Ormategui, N., et al.: Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9, 530–536 (2009)CrossRefGoogle Scholar
  109. 109.
    So, H.M., Park, D.W., Jeon, E.K., et al.: Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4, 197–201 (2008)CrossRefGoogle Scholar
  110. 110.
    Tang, X.W., Bansaruntip, S., Nakayama, N., et al.: Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–1636 (2006)CrossRefGoogle Scholar
  111. 111.
    Star, A., Tu, E., Niemann, J., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. 103, 921–926 (2006)CrossRefGoogle Scholar
  112. 112.
    So, H.M., Won, K., Kim, Y.H., et al.: Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906–11907 (2005)CrossRefGoogle Scholar
  113. 113.
    Gui, E.L., Li, L.J., Zhang, K.K., et al.: DNA sensing by field-effect transistors based on networks of carbon nanotubes. J. Am. Chem. Soc. 129, 14427–14432 (2007)CrossRefGoogle Scholar
  114. 114.
    Withey, G.D., Lazareck, A.D., Tzolov, M.B., et al.: Ultra-high redox enzyme signal transduction using highly ordered carbon nanotube array electrodes. Biosens. Bioelectron. 21, 1560–1565 (2006)CrossRefGoogle Scholar
  115. 115.
    Yu, X., Chattopadhyay, D., Galeska, I., et al.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5, 408–411 (2003)CrossRefGoogle Scholar
  116. 116.
    O’Connor, M., Kim, S.N., Killard, A.J., et al.: Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst 129, 1176–1180 (2004)CrossRefGoogle Scholar
  117. 117.
    Zhang, X.Z., Jiao, K., Liu, S.F., et al.: Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81, 6006–6012 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingP.R. China
  2. 2.World Precision Instruments, Inc.SarasotaUSA
  3. 3.University of Science & TechnologyBeijingP.R. China
  4. 4.University of CaliforniaSan DiegoUSA

Personalised recommendations