Skip to main content

Carbon Nanofiber-Based Nanocomposites for Biosensing

  • Chapter
  • First Online:
NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The history of carbon nanofiber (CNF) can go back more than a century. It was reported in a patent published in 1889 that carbon filaments are grown from carbon-containing gases using a metallic crucible as the – probably unintentional – catalyst [1]. In 1950, a Russian group performed the first electron microscopy observations of CNFs. For the first 80 years of the twentieth century, however, the occurrence of CNFs – then often referred to as “carbon filaments” or “filamentous carbon” – was considered a nuisance. For example, in Fischer–Tropsch or steam-methane reforming reactions, the fibers often occurred in metallic catalysts used for the conversion of carbon-containing gases. In 1991, carbon nanotubes (CNTs) were first discovered as a new member of the carbon allotrope family. This discovery and other nanostructures triggered an outburst of interest in CNTs and nanofibers [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Jong, K.P., Geus, J.W.: Carbon nanofibers: catalytic synthesis and applications. Catal. Rev. 42, 481–510 (2000)

    Article  Google Scholar 

  2. Lijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  3. Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A Gen. 253, 337–358 (2003)

    Article  CAS  Google Scholar 

  4. Zhao, X.F., Qiu, J.H., Sun, Y.X., et al.: Fabrication of carbon nanofibres and bamboo-shaped carbon nanotubes with open ends from anthracite coal by arc discharge. New Carbon Mater. 24, 109–113 (2009)

    CAS  Google Scholar 

  5. Guo, T., Nikolaev, P., Rinzler, A.G.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694–10697 (1995)

    Article  CAS  Google Scholar 

  6. Boskovic Bojan, O., Stolojan, V., Khan Rizwan, U.A., et al.: Large-area synthesis of carbon nanofibres at room temperature. Nat. Mater. 1, 165–168 (2002)

    Article  CAS  Google Scholar 

  7. Ochoa-Fernandez, E., Chen, D., Yu, Z., et al.: Carbon nanofiber supported Ni catalyst: effects of nanostructure of supports and catalyst preparation. Catal. Today 102–103, 45–49 (2005)

    Article  Google Scholar 

  8. Zhang, J., Khatri, I., Kishi, N., et al.: Synthesis of carbon nanofibers using C60, graphite and boron. Mater. Lett. 64, 1243–1246 (2010)

    Article  CAS  Google Scholar 

  9. Wang, Y., Serrano, S., Santiago-Aviles, J.J.: Raman characterization of carbon nanofibers prepared using electrospinning. Synth. Met. 138, 423–427 (2003)

    Article  CAS  Google Scholar 

  10. Watari, F., Tohji, K., Asaoka, K., et al.: Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation. Biomed. Mater. Eng. 19, 35–43 (2009)

    CAS  Google Scholar 

  11. Melechko, A.V., Merkulov, V.I., McKnight, T.E., et al.: Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 (2005)

    Article  Google Scholar 

  12. Melechko, A.V., Desikan, R., McKnight, T.E., et al.: Synthesis of vertically aligned carbon nanofibres for interfacing with live systems. J. Phys. D Appl. Phys. 42, 193001 (2009)

    Article  Google Scholar 

  13. Rice, R.J., McCreery, R.L.: Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal. Chem. 61, 1637–1641 (1989)

    Article  CAS  Google Scholar 

  14. Wang, J., Lin, Y.: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trac Trends Anal. Chem. 27, 619–626 (2008)

    Article  Google Scholar 

  15. Ates, M., Sarac, A.S.: Conducting polymer coated carbon surfaces and biosensor applications. Prog. Org. Coat. 66, 337–358 (2009)

    Article  CAS  Google Scholar 

  16. Huang, J., Liu, Y., You, T.: Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods 2, 202–211 (2010)

    Article  Google Scholar 

  17. Kang, I.P., Heung, Y.Y., Kim, J.H., et al.: Introduction to carbon nanotube and nanofiber smart materials. Compos. B Eng. 37, 382–394 (2006)

    Article  Google Scholar 

  18. Yamada, Y., Hosono, Y.K., Murakoshi, N., et al.: Carbon nanofiber formation on iron group metal loaded on SiO2. Diamond Relat. Mater. 15, 1080–1084 (2006)

    Article  CAS  Google Scholar 

  19. Rodriguez, N.M.: A review of catalytically grown carbon nanofibers. J. Mater. Res. 8, 3233–3250 (1993)

    Article  CAS  Google Scholar 

  20. Lee, S., Kim, T.R., Ogale, A.A., et al.: Surface and structure modification of carbon nanofibers. Synth. Met. 157, 644–650 (2007)

    Article  CAS  Google Scholar 

  21. Yu, Z., Chen, D., Totdal, B., et al.: Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition. J. Phys. Chem. B 109, 6096–6102 (2005)

    Article  CAS  Google Scholar 

  22. Vamvakaki, V., Tsagaraki, K., Chaniotakis, N.: Carbon nanofiber-based glucose biosensor. Anal. Chem. 78, 5538–5542 (2006)

    Article  CAS  Google Scholar 

  23. Cui, H., Kalinin, S.V., Yang, X., et al.: Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett. 4, 2157–2161 (2004)

    Article  CAS  Google Scholar 

  24. Perez, B., del Valle, M., Alegret, S., et al.: Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Talanta 74, 398–404 (2007)

    CAS  Google Scholar 

  25. Wu, L., Zhang, X., Ju, H.: Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens. Bioelectron. 23, 479–484 (2007)

    Article  Google Scholar 

  26. Heller, A., Feldman, B.: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008)

    Article  CAS  Google Scholar 

  27. Park, S., Boo, H., Chung, T.D.: Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006)

    Article  CAS  Google Scholar 

  28. Sun, Y., Buck, H., Mallouk, T.E.: Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem. 73, 1599–1604 (2001)

    Article  CAS  Google Scholar 

  29. Prabhu, S.V., Baldwin, R.P.: Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode. Anal. Chem. 61, 852–856 (1989)

    Article  CAS  Google Scholar 

  30. Li, C., Liu, Y., Li, L., et al.: A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77, 455–459 (2008)

    Article  CAS  Google Scholar 

  31. Chen, J., Zhang, W.D., Ye, J.S.: Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10, 1268–1271 (2008)

    Article  CAS  Google Scholar 

  32. Ozcan, L., Sahin, Y., Turk, H.: Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosens. Bioelectron. 24, 512–517 (2008)

    Article  CAS  Google Scholar 

  33. Kang, X., Mai, Z., Zou, X., et al.: A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)

    Article  CAS  Google Scholar 

  34. Ye, J.S., Wen, Y., Zhang, W.D., et al.: Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun. 6, 66–70 (2004)

    Article  CAS  Google Scholar 

  35. Liu, Y., Teng, H., Hou, H., et al.: Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron. 24, 3329–3334 (2009)

    Article  CAS  Google Scholar 

  36. Azevedo, A.M., Prazeres, D.M.F., Cabral, J.M.S., et al.: Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron. 21, 235–247 (2005)

    Article  CAS  Google Scholar 

  37. Wu, L., McIntosh, M., Zhang, X., et al.: Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase. Talanta 74, 387–392 (2007)

    Article  CAS  Google Scholar 

  38. Wu, L., Lei, J., Zhang, X., et al.: Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing. Biosens. Bioelectron. 24, 644–649 (2008)

    Article  CAS  Google Scholar 

  39. Wu, L., Zhang, X., Ju, H.: Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem. 79, 453–458 (2007)

    Article  CAS  Google Scholar 

  40. Du, D., Huang, X., Cai, J., et al.: An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite. Anal. Bioanal. Chem. 387, 1059–1065 (2007)

    Article  CAS  Google Scholar 

  41. Vamvakaki, V., Hatzimarinaki, M., Chaniotakis, N.: Biomimetically synthesized silica-carbon nanofiber architectures for the development of highly stable electrochemical biosensor systems. Anal. Chem. 80, 5970–5975 (2008)

    Article  CAS  Google Scholar 

  42. Hatzimarinaki, M., Vamvakaki, V., Chaniotakis, N.: Spectro-electrochemical studies of acetylcholinesterase in carbon nanofiber-bioinspired silica nanocomposites for biosensor development. J. Mater. Chem. 19, 428–433 (2009)

    Article  CAS  Google Scholar 

  43. Zhang, J., Lei, J., Liu, Y., et al.: Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite. Biosens. Bioelectron. 24, 1858–1863 (2009)

    Article  CAS  Google Scholar 

  44. Jamal, M., Sarac, A.S., Magner, E.: Conductive copolymer-modified carbon fibre microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol. Sensors Actuat. B Chem. 97, 59–66 (2004)

    Article  Google Scholar 

  45. Wu, L., Zhang, X., Ju, H.: Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode. Analyst 132, 406–408 (2007)

    Article  CAS  Google Scholar 

  46. Li, Z., Cui, X., Zheng, J., et al.: Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Anal. Chim. Acta 597, 238–244 (2007)

    Article  CAS  Google Scholar 

  47. Zhang, W., Li, G.: Third-generation biosensors based on the direct electron transfer of proteins. Anal. Sci. 20, 603–609 (2004)

    Article  CAS  Google Scholar 

  48. Stoica, L., Ludwig, R., Haltrich, D., et al.: Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Anal. Chem. 78, 393–398 (2006)

    Article  CAS  Google Scholar 

  49. Lindgren, A., Tanaka, M., Ruzgas, T., et al.: Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochem. Commun. 1, 171–175 (1999)

    Article  CAS  Google Scholar 

  50. Stoica, L., Dimcheva, N., Haltrich, D., et al.: Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes. Biosens. Bioelectron. 20, 2010–2018 (2005)

    Article  CAS  Google Scholar 

  51. Tian, Y., Mao, L., Okajima, T., et al.: Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal. Chem. 74, 2428–2434 (2002)

    Article  CAS  Google Scholar 

  52. Zheng, W., Li, Q., Su, L., et al.: Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 18, 587–594 (2006)

    Article  CAS  Google Scholar 

  53. Heller, A.: Electrical wiring of redox enzymes. Acc. Chem. Res. 23, 128–134 (1990)

    Article  CAS  Google Scholar 

  54. Jeuken, L.J.C.: Conformational reorganisation in interfacial protein electron transfer. Biochim. Biophys. Acta Bioenerg. 1604, 67–76 (2003)

    Article  CAS  Google Scholar 

  55. Yan, Y., Zheng, W., Zhang, M., et al.: Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced Faradic response. Langmuir 21, 6560–6566 (2005)

    Article  CAS  Google Scholar 

  56. Yu, X., Chattopadhyay, D., Galeska, I., et al.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5, 408–411 (2003)

    Article  CAS  Google Scholar 

  57. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)

    Article  CAS  Google Scholar 

  58. Lu, X., Zhou, J., Lu, W., et al.: Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosens. Bioelectron. 23, 1236–1243 (2008)

    Article  CAS  Google Scholar 

  59. Ronkainen-Matsuno, N.J., Thomas, J.H., Halsall, H.B., et al.: Electrochemical immunoassay moving into the fast lane. Trac Trends Anal. Chem. 21, 213–225 (2002)

    Article  CAS  Google Scholar 

  60. Liu, G., Lin, Y.: Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 74, 308–317 (2007)

    Article  CAS  Google Scholar 

  61. Wu, L., Yan, F., Ju, H.: An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J. Immunol. Meth. 322, 12–19 (2007)

    Article  CAS  Google Scholar 

  62. Wang, J., Chen, Q., Renschler, C.L., et al.: Ultrathin porous carbon films as amperometric transducers for biocatalytic sensors. Anal. Chem. 66, 1988–1992 (1994)

    Article  CAS  Google Scholar 

  63. Baker, S.E., Tse, K.Y., Lee, C.S., et al.: Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications. Diamond Relat. Mater. 15, 433–439 (2006)

    Article  CAS  Google Scholar 

  64. Baker, S.E., Tse, K.Y., Hindin, E., et al.: Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem. Mater. 17, 4971–4978 (2005)

    Article  CAS  Google Scholar 

  65. Landis, E.C., Hamers, R.J.: Covalent grafting of ferrocene to vertically aligned carbon nanofibers: electron-transfer processes at nanostructured electrodes. J. Phys. Chem. C 112, 16910–16918 (2008)

    Article  CAS  Google Scholar 

  66. Landis, E.C., Hamers, R.J.: Covalent grafting of redox-active molecules to vertically aligned carbon nanofiber arrays via “click” chemistry. Chem. Mater. 21, 724–730 (2009)

    Article  CAS  Google Scholar 

  67. Tornoe, C.W., Christensen, C., Meldal, M.: Peptidotriazoles on solid phase: [1–3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002)

    Article  CAS  Google Scholar 

  68. McKnight, T.E., Peeraphatdit, C., Jones, S.W., et al.: Site-specific biochemical functionalization along the height of vertically aligned carbon nanofiber arrays. Chem. Mater. 18, 3203–3211 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Carbon Nanofiber-Based Nanocomposites for Biosensing. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_5

Download citation

Publish with us

Policies and ethics