Advertisement

NanoBiosensing pp 485-534 | Cite as

Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Cells are the basic units of life. All organisms are made up of cells. Thus, developing sensing platforms for probing the chemistry and physics in or at a living cell is one of the basic goals in understanding the intricate processes that ultimately contribute to life and life processes. Moreover, in the field of medicine, each cell type has a unique molecular signature that distinguishes between healthy and diseased tissues [1]. Cancerous cells are differentiated from noncancerous ones on the basis of ­intracellular or extracellular (cell surface) biomarkers. In most cases, the distinctions between normal vs. tumor and benign vs. metastatic cells are often subtle. Thus, the identification of cellular signatures for early cancer cell detection is a major hurdle for cancer therapy. The earlier these signatures can be established, the more effectively they can be treated [2]. In this regard, technological systems that provide sensors with high sensitivity, selectivity, and stability are in high demand to identify the unique cellular characteristics such as proteins and nucleic acids in and on living cells at early disease states, providing the prospects of better health and more effective therapy [3].

Keywords

Cell Surface Carbohydrate Electrochemical Impedance Spectroscopic Cell Surface Glycan SERS Label Electrochemical Impedance Spectroscopic Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bajaj, A., Miranda, O.R., Kim, I.B., et al.: Detection and differentiation of normal, cancerous, and metastatic cells using NP-polymer sensor arrays. Proc. Natl. Acad. Sci. 106, 10912–10916 (2009)CrossRefGoogle Scholar
  2. 2.
    Pantel, K., Brakenhoff, R.H., Brandt, B.: Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008)CrossRefGoogle Scholar
  3. 3.
    Agasti, S.S., Rana, S., Park, M.H., et al.: NPs for detection and diagnosis. Adv. Drug Deliv. Rev. 62, 316–328 (2010)CrossRefGoogle Scholar
  4. 4.
    Cai, W.B., Chen, X.Y.: Nanoplatforms for targeted molecular imaging in living subjects. Small 11, 1840–1854 (2007)CrossRefGoogle Scholar
  5. 5.
    Daniel, M.C., Astruc, D.: Gold NPs: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRefGoogle Scholar
  6. 6.
    Wilson, R.: The use of gold NPs in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008)CrossRefGoogle Scholar
  7. 7.
    Bruchez, M., Moronne, M., Gin, P., et al.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  8. 8.
    Alivisatos, A.P., Gu, W.W., Larabell, C.: Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Lin, Y.H.: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trac Trends Anal. Chem. 27, 619–626 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, Z., Tabakman, S., Welsher, K., et al.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009)CrossRefGoogle Scholar
  11. 11.
    Knopp, D., Tang, D.P., Niessner, R.: Review: bioanalytical applications of biomolecule-­functionalized nanometer-sized doped silica particles. Anal. Chim. Acta 647, 14–30 (2009)CrossRefGoogle Scholar
  12. 12.
    Gao, J.H., Gu, H.W., Xu, B.: Multifunctional magnetic NPs: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)CrossRefGoogle Scholar
  13. 13.
    Sheehan, P.E., Whitman, L.J.: Detection limits for nanoscale biosensors. Nano Lett. 5, 803–807 (2005)CrossRefGoogle Scholar
  14. 14.
    de la Escosura-Muñiz, A., Ambrosi, A., Merkoci, A.: Electrochemical analysis with nanoparticle-based biosystems. Trac Trends Anal. Chem. 27, 568–584 (2008)CrossRefGoogle Scholar
  15. 15.
    Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide NPs for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRefGoogle Scholar
  16. 16.
    Cai, W., Rao, J., Gambhir, S.S., et al.: How molecular imaging is speeding up antiangiogenic drug development. Mol. Cancer Ther. 5, 2624–2633 (2006)CrossRefGoogle Scholar
  17. 17.
    Ntziachristos, V.: Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8, 1–33 (2006)CrossRefGoogle Scholar
  18. 18.
    Weissleder, R., Mahmood, U.: Molecular imaging. Radiology 219, 316–333 (2001)Google Scholar
  19. 19.
    Eggeling, C., Widengren, J., Rigler, R., et al.: Photobleaching of fluorescent dyes under ­conditions used for single-molecule detection: evidence of two-step photolysis. Anal. Chem. 70, 2651–2659 (1998)CrossRefGoogle Scholar
  20. 20.
    Goesmann, H., Feldmann, C.: Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 1362–1395 (2010)Google Scholar
  21. 21.
    Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)CrossRefGoogle Scholar
  22. 22.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)CrossRefGoogle Scholar
  23. 23.
    Medintz, I.L., Uyeda, H.T., Goldman, E.R., et al.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)CrossRefGoogle Scholar
  24. 24.
    Zhelev, Z., Ohba, H., Bakalova, R.: Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J. Am. Chem. Soc. 128, 6324–6325 (2006)CrossRefGoogle Scholar
  25. 25.
    Wang, G.Q., Wang, Y.Q., Chen, L.X., et al.: Nanomaterial-assisted aptamers for optical ­sensing. Biosens. Bioelectron. 25, 1859–1868 (2010)CrossRefGoogle Scholar
  26. 26.
    Akerman, M.E., Chan, W.C.W., Laakkonen, P., et al.: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. 99, 12617–12621 (2002)CrossRefGoogle Scholar
  27. 27.
    Lee, S., Xie, J., Chen, X.Y.: Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev. 110, 3087–3111 (2010)CrossRefGoogle Scholar
  28. 28.
    Orndorff, R.L., Rosenthal, S.J.: Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells. Nano Lett. 9, 2589–2599 (2009)CrossRefGoogle Scholar
  29. 29.
    Cai, W., Shin, D.W., Chen, K., et al.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006)CrossRefGoogle Scholar
  30. 30.
    Choi, H.S., Liu, W.H., Liu, F.B.: Design considerations for tumour-targeted NPs. Nat. Nanotechnol. 5, 42–47 (2010)CrossRefGoogle Scholar
  31. 31.
    Gao, X.H., Cui, Y.Y., Levenson, R.M., et al.: In vivo cancer targeting and imaging with ­semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)CrossRefGoogle Scholar
  32. 32.
    Kim, B.Y.S., Jiang, W., Oreopoulos, J., et al.: Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett. 8, 3887–3892 (2008)CrossRefGoogle Scholar
  33. 33.
    Ma, N., Sargent, E.H., Kelley, S.O.: One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat. Nanotechnol. 4, 121–125 (2009)CrossRefGoogle Scholar
  34. 34.
    Fang, X.H., Tan, W.H.: Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57 (2010)CrossRefGoogle Scholar
  35. 35.
    Bagalkot, V., Zhang, L.F., Levy-Nissenbaum, E.: Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007)CrossRefGoogle Scholar
  36. 36.
    Huang, Y.F., Chang, H.T., Tan, W.H.: Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 80, 567–572 (2008)CrossRefGoogle Scholar
  37. 37.
    Orndorff, R.L., Warnement, M.R., Mason, J.N.: Quantum dot ex vivo labeling of neuromuscular synapses. Nano Lett. 8, 780–785 (2008)CrossRefGoogle Scholar
  38. 38.
    Muro, E., Pons, T., Lequeux, N., et al.: Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J. Am. Chem. Soc. 132, 4556–4557 (2010)CrossRefGoogle Scholar
  39. 39.
    Kikkeri, R., Lepenies, B., Adibekian, A., et al.: In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J. Am. Chem. Soc. 131, 2110–2112 (2009)CrossRefGoogle Scholar
  40. 40.
    Huang, C.C., Chen, C.T., Shiang, Y.C., et al.: Synthesis of fluorescent carbohydrate-­protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)CrossRefGoogle Scholar
  41. 41.
    Sanchez-Carbayo, M.: Antibody arrays: technical considerations and clinical applications in cancer. Clin. Chem. 52, 1651–1659 (2006)CrossRefGoogle Scholar
  42. 42.
    Phillips, R.L., Miranda, O.R., You, C.C., et al.: Rapid and efficient identification of ­bacteria using gold-NP–poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed. 47, ­2590–2594 (2008)CrossRefGoogle Scholar
  43. 43.
    Thomas, S.W., Joly, G.D., Swager, T.M.: Chemical sensors based on amplifying conjugated polymers. Chem. Rev. 107, 1339–1386 (2007)CrossRefGoogle Scholar
  44. 44.
    Bajaj, A., Miranda, O.R., Phillips, R., et al.: Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers. J. Am. Chem. Soc. 132, 1018–1022 (2010)CrossRefGoogle Scholar
  45. 45.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical ­dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  46. 46.
    Heinrich, J.L., Curtis, C.L., Credo, G.M., et al.: Luminescent colloidal silicon suspensions from porous silicon. Science 255, 66–68 (1992)CrossRefGoogle Scholar
  47. 47.
    Li, Z.F., Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon NPs and their use as fluorescent biological staining labels. Nano Lett. 4, 1463–1467 (2004)CrossRefGoogle Scholar
  48. 48.
    Park, J.H., Gu, L., Maltzahn, G., et al.: Biodegradable luminescent porous silicon NPs for in vivo applications. Nat. Mater. 8, 331–336 (2009)CrossRefGoogle Scholar
  49. 49.
    Nayak, S., Lyon, L.A.: Soft nanotechnology with soft NPs. Angew. Chem. Int. Ed. 44, 7686–7708 (2005)CrossRefGoogle Scholar
  50. 50.
    Kim, J., Nayak, S., Lyon, L.A.: Bioresponsive hydrogel microlenses. J. Am. Chem. Soc. 127, 9588–9592 (2005)CrossRefGoogle Scholar
  51. 51.
    Asher, S.A., Alexeev, V.L., Goponenko, A.V., et al.: Photonic crystal carbohydrate ­sensors: low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322–3329 (2003)CrossRefGoogle Scholar
  52. 52.
    Gota, C., Okabe, K., Funatsu, T., et al.: Hydrophilic fluorescent nanogel thermometer for ­intracellular thermometry. J. Am. Chem. Soc. 131, 2766–2767 (2009)CrossRefGoogle Scholar
  53. 53.
    Peng, H.S., Stolwijk, J.A., Sun, L.N., et al.: A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew. Chem. Int. Ed. 49, 4246–4249 (2010)CrossRefGoogle Scholar
  54. 54.
    Welsher, K., Liu, Z., Daranciang, D., et al.: Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, ­586–590 (2008)CrossRefGoogle Scholar
  55. 55.
    O’Connell, M.J., Bachilo, S.M., Huffmanet, C.B., et al.: Band gap fluorescence from ­individual single-walled carbon nanotubes. Science 297, 593–596 (2002)CrossRefGoogle Scholar
  56. 56.
    Cherukuri, P., Bachilo, S.M., Litovsky, S.H., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)CrossRefGoogle Scholar
  57. 57.
    Welsher, K., Liu, Z., Sherlock, S.P., et al.: A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009)CrossRefGoogle Scholar
  58. 58.
    Aubin, J.E.: Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 36–43 (1979)CrossRefGoogle Scholar
  59. 59.
    Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8, 1577–1585 (2008)CrossRefGoogle Scholar
  60. 60.
    Tromsdorf, U.I., Bruns, O.T., Salmen, S.C., et al.: A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide NPs. Nano Lett. 9, 4434–4440 (2009)CrossRefGoogle Scholar
  61. 61.
    Sun, C., Veiseh, O., Gunn, J., et al.: In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 4, 372–379 (2008)CrossRefGoogle Scholar
  62. 62.
    Laurent, S., Boutry, S., Mahieu, I., et al.: Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr. Med. Chem. 16, 4712–4727 (2009)CrossRefGoogle Scholar
  63. 63.
    Park, J.H., von Maltzahn, G., Zhang, L.L., et al.: Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008)CrossRefGoogle Scholar
  64. 64.
    Schellenberger, E., Schnorr, J., Reutelingsperger, C., et al.: Linking proteins with anionic NPs via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of ­apoptosis. Small 4, 225–230 (2008)CrossRefGoogle Scholar
  65. 65.
    Hakomori, S.: Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. 99, 10231–10233 (2002)CrossRefGoogle Scholar
  66. 66.
    El-Boubbou, K., Zhu, D.C., Vasileiou, C., et al.: Magnetic glyco-NPs: a tool to detect, ­differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J. Am. Chem. Soc. 132, 4490–4499 (2010)CrossRefGoogle Scholar
  67. 67.
    van Kasteren, S.I., Campbell, S.J., Serres, S., et al.: GlycoNPs allow pre-symptomatic in vivo imaging of brain disease. Proc. Natl. Acad. Sci. 106, 18–23 (2009)CrossRefGoogle Scholar
  68. 68.
    Kim, D.H., Rozhkova, E.A., Ulasov, I.V., et al.: Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010)CrossRefGoogle Scholar
  69. 69.
    Schottelius, M., Laufer, B., Kessler, H., et al.: Ligands for mapping αvβ3-integrin expression in vivo. Acc. Chem. Res. 42, 969–980 (2009)CrossRefGoogle Scholar
  70. 70.
    Xie, J., Chen, K., Lee, H.Y., et al.: Ultrasmall c(RGDyK)-coated Fe3O4 NPs and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc. 130, 7542–7543 (2008)CrossRefGoogle Scholar
  71. 71.
    Bitsch, A., Bruhn, H., Vougioukas, V., et al.: Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am. J. Neuroradiol. 20, 1619–1627 (1999)Google Scholar
  72. 72.
    Lee, J.H., Huh, Y.M., Jun, Y.W., et al.: Artificially engineered magnetic NPs for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007)CrossRefGoogle Scholar
  73. 73.
    Lim, Y.T., Noh, Y.W., Cho, J.H., et al.: Multiplexed imaging of therapeutic cells with ­multispectrally encoded magnetofluorescent nanocomposite emulsions. J. Am. Chem. Soc. 131, 17145–17154 (2009)CrossRefGoogle Scholar
  74. 74.
    Lee, J.E., Lee, N., Kim, H., et al.: Uniform mesoporous dye-doped silica NPs decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, ­fluorescence imaging, and drug delivery. J. Am. Chem. Soc. 132, 552–557 (2010)CrossRefGoogle Scholar
  75. 75.
    Wang, C.G., Chen, J.J., Talavage, T., et al.: Gold nanorod/Fe3O4 NP “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 48, 2759–2763 (2009)CrossRefGoogle Scholar
  76. 76.
    Bruns, O.T., Ittrich, H., Peldschus, K., et al.: Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat. Nanotechnol. 4, 193–201 (2009)CrossRefGoogle Scholar
  77. 77.
    Deyev, S.M., Waibel, R., Lebedenko, E.N., et al.: Design of multivalent complexes using the barnase-barstar module. Nat. Biotechnol. 21, 1486–1492 (2003)CrossRefGoogle Scholar
  78. 78.
    Nikitin, M.P., Zdobnova, T.A., Lukash, S.V., et al.: Protein-assisted self-assembly of ­multifunctional NPs. Proc. Natl. Acad. Sci. 107, 5827–5832 (2010)CrossRefGoogle Scholar
  79. 79.
    Ochsenkühn, M.A., Jess, P.R.T., Stoquert, H., et al.: Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano 3, 3613–3621 (2009)CrossRefGoogle Scholar
  80. 80.
    Matschulat, A., Drescher, D., Kneipp, J.: Surface-enhanced Raman scattering hybrid ­nanoprobe multiplexing and imaging in biological systems. ACS Nano 4, 3259–3269 (2010)CrossRefGoogle Scholar
  81. 81.
    Creighton, J.A., Blatchford, C.G., Albretch, M.G.: Plasma resonance enhancement of ­Raman-scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. II 75, 790–798 (1979)CrossRefGoogle Scholar
  82. 82.
    Qian, X.M., Peng, X.H., Ansari, D.O., et al.: In vivo tumor targeting and spectroscopic ­detection with surface-enhanced Raman NP tags. Nat. Biotechnol. 26, 83–90 (2008)CrossRefGoogle Scholar
  83. 83.
    Vitol, E.A., Orynbayeva, Z., Bouchard, M.J., et al.: In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano 3, 3529–3536 (2009)CrossRefGoogle Scholar
  84. 84.
    Keren, S., Zavaleta, C., Cheng, Z., et al.: Noninvasive molecular imaging of small living ­subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. 105, 5844–5849 (2008)CrossRefGoogle Scholar
  85. 85.
    Chourpa, I., Lei, F.H., Dubois, P., et al.: Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev. 37, 993–1000 (2008)CrossRefGoogle Scholar
  86. 86.
    Wang, Y.L., Seebald, J.L., Szeto, D.P., et al.: Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in Zebrafish embryos: in vivo and multiplex imaging. ACS Nano (2010). doi: 10.1021/nn100351h Google Scholar
  87. 87.
    Hu, Q., Tay, L., Noestheden, M., et al.: Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J. Am. Chem. Soc. 129, 14–15 (2007)CrossRefGoogle Scholar
  88. 88.
    Zavaleta, C.L., Smith, B.R., Walton, I., et al.: Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. 106, 13511–13516 (2009)CrossRefGoogle Scholar
  89. 89.
    Zhao, W.A., Brook, M.A., Li, Y.F.: Design of gold NP-based colorimetric biosensing assays. Chembiochem 9, 2362–2371 (2008)CrossRefGoogle Scholar
  90. 90.
    Medley, C.D., Smith, J.E., Tang, Z.W., et al.: Gold NP-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 80, 1067–1072 (2008)CrossRefGoogle Scholar
  91. 91.
    Bakker, E., Qin, Y.: Electrochemical sensors. Anal. Chem. 78, 3965–3984 (2006)CrossRefGoogle Scholar
  92. 92.
    Yang, W.R., Ratinac, K.R., Ringer, S.P., et al.: Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)CrossRefGoogle Scholar
  93. 93.
    Bery, M.N., Grivell, M.B.: An electrochemical description of metabolism. In: Walz, D., Berg, H., Milazzo, G. (eds.) Bioelectrochemistry of Cells and Tissues. Birkhäuser Verlag, Basel (1995)Google Scholar
  94. 94.
    Nonner, W., Eisenberg, B.: Electrodiffusion in ionic channels of biological membranes. J. Mol. Liq. 87, 149–162 (2000)CrossRefGoogle Scholar
  95. 95.
    Gu, H.Y., Chen, Z., Sa, R.X., et al.: The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials 25, 3445–3451 (2004)CrossRefGoogle Scholar
  96. 96.
    Du, D., Liu, S.L., Chen, J., et al.: Colloidal gold NP modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 26, 6487–6495 (2005)CrossRefGoogle Scholar
  97. 97.
    Hao, C., Ding, L., Zhang, X.J., et al.: Biocompatible conductive architecture of carbon ­nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal. Chem. 79, 4442–4447 (2007)CrossRefGoogle Scholar
  98. 98.
    Chen, J., Du, D., Yan, F., et al.: Electrochemical anti-tumor drug sensitivity test for leukemia K562 cells at a carbon nanotubes modified electrode. Chem. Eur. J. 11, 1467–1472 (2005)CrossRefGoogle Scholar
  99. 99.
    Ding, L., Hao, C., Xue, Y.D., et al.: A bio-inspired support of gold NPs-chitosan ­nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8, 1341–1346 (2007)CrossRefGoogle Scholar
  100. 100.
    Yan, F., Chen, J., Ju, H.X.: Immobilization and electrochemical behavior of gold NPs ­modified leukemia K562 cells and application in drug sensitivity test. Electrochem. Commun. 9, ­293–298 (2007)CrossRefGoogle Scholar
  101. 101.
    Liu, S.Q., Leech, D., Ju, H.X.: Application of colloidal gold in protein immobilization, ­electron transfer, and biosensing. Anal. Lett. 36, 1–19 (2003)CrossRefGoogle Scholar
  102. 102.
    Suni, I.I.: Impedance methods for electrochemical sensors using nanomaterials. Trac Trends Anal. Chem. 27, 604–611 (2008)CrossRefGoogle Scholar
  103. 103.
    Yan, Y.H., Dong, Z.Y., Shanov, V.N., et al.: Electrochemical impedance measurement of ­prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology 18, 465505 (2007)CrossRefGoogle Scholar
  104. 104.
    Pancrazio, J.J., Whelan, J.P., Borkholder, D.A., et al.: Development and application of ­cell-based biosensors. Ann. Biomed. Eng. 27, 697–711 (1999)CrossRefGoogle Scholar
  105. 105.
    Ding, L., Hao, C., Zhang, X.J., et al.: Carbon nanofiber doped polypyrrole nanoscaffold for electrochemical monitoring of cell adhesion and proliferation. Electrochem. Commun. 11, 760–763 (2009)CrossRefGoogle Scholar
  106. 106.
    Varshney, M., Li, Y.: Interdigitated array microelectrode based impedance biosensor coupled with magnetic NP–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 22, 2408–2414 (2007)CrossRefGoogle Scholar
  107. 107.
    Ding, L., Du, D., Zhang, X.J., et al.: Trends in cell-based electrochemical biosensors. Curr. Med. Chem. 15, 3160–3167 (2008)CrossRefGoogle Scholar
  108. 108.
    Yun, Y.H., Shanov, V., Tu, Y., et al.: A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 6, 689–693 (2006)CrossRefGoogle Scholar
  109. 109.
    Kam, N.W.S., Jan, E., Kotov, N.A.: Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 9, 273–278 (2009)CrossRefGoogle Scholar
  110. 110.
    Wallace, G.G., Moulton, S.E., Clark, G.M.: Electrode-cellular interface. Science 324, ­185–186 (2009)CrossRefGoogle Scholar
  111. 111.
    Keefer, E.W., Botterman, B.R., Romero, M.I., et al.: Carbon nanotube coating improves ­neuronal recordings. Nat. Nanotechnol. 3, 434–439 (2008)CrossRefGoogle Scholar
  112. 112.
    Agard, N.J., Bertozzi, C.R.: Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42, 788–797 (2009)CrossRefGoogle Scholar
  113. 113.
    Varki, A., Cummings, R.D., Esko, J.D., et al.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2008)Google Scholar
  114. 114.
    Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006)CrossRefGoogle Scholar
  115. 115.
    Marth, J.D., Grewal, P.K.: Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008)CrossRefGoogle Scholar
  116. 116.
    Hsu, K., Pilobello, K.T., Mahal, L.K.: Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2, 153–157 (2006)CrossRefGoogle Scholar
  117. 117.
    Zhelev, Z., Ohba, H., Bakalova, R., et al.: Fabrication of quantum dot–lectin conjugates as novel fluorescent probes for microscopic and flow cytometric identification of leukemia cells from normal lymphocytes. Chem. Commun. 15, 1980–1982 (2005)CrossRefGoogle Scholar
  118. 118.
    Pilobello, K.T., Mahal, L.K.: Deciphering the glycocode: the complexity and analytical ­challenge of glycomics. Curr. Opin. Chem. Biol. 11, 300–305 (2007)CrossRefGoogle Scholar
  119. 119.
    Lis, H., Sharon, N.: Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998)CrossRefGoogle Scholar
  120. 120.
    Pilobello, K.T., Slawek, D.E., Mahal, L.K.: A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. 104, 11534–11539 (2007)CrossRefGoogle Scholar
  121. 121.
    Cheng, W., Ding, L., Ding, S.J., et al.: A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 48, 6465–6468 (2009)CrossRefGoogle Scholar
  122. 122.
    Cheng, W., Ding, L., Lei, J.P., et al.: Effective cell capture with tetrapeptide functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal. Chem. 80, 3867–3872 (2008)CrossRefGoogle Scholar
  123. 123.
    Ding, L., Cheng, W., Wang, X.J., et al.: A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells. Chem. Commun. 46, 7161–7163 (2009)CrossRefGoogle Scholar
  124. 124.
    Xue, Y.D., Bao, L., Xiao, X.R., et al.: Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal. Biochem. 410, 92–97 (2010)CrossRefGoogle Scholar
  125. 125.
    Han, E., Ding, L., Lian, H.Z., et al.: Cytosensing and dynamic monitoring of cell surface carbohydrate expression by electrochemiluminescence of quantum dots. Chem. Commun. 46, 5446–5448 (2010)CrossRefGoogle Scholar
  126. 126.
    Zhang, J.J., Cheng, F.F., Zheng, T.T., et al.: Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein. Anal. Chem. 82, 3547–3555 (2010)CrossRefGoogle Scholar
  127. 127.
    Du, D., Ju, H.X., Zhang, X.J., et al.: Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold NPs modified on a methoxysilyl-­terminated butyrylchitosan matrix. Biochemistry 44, 11539–11545 (2005)CrossRefGoogle Scholar
  128. 128.
    Shao, M.L., Bai, H.J., Gou, H.L., et al.: Cytosensing and evaluation of cell surface glycoprotein based on a biocompatible poly(diallydimethylammonium) doped poly(dimethylsiloxane) film. Langmuir 25, 3089–3095 (2009)CrossRefGoogle Scholar
  129. 129.
    Katz, E., Willner, I.: Integrated NP-biomolecule hybrid systems: synthesis, properties and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004)CrossRefGoogle Scholar
  130. 130.
    Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)CrossRefGoogle Scholar
  131. 131.
    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: NP-based bio-barcodes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)CrossRefGoogle Scholar
  132. 132.
    Qiu, F., Jiang, D., Ding, Y., et al.: Monolayer-barcoded NPs for on-chip DNA hybridization assay. Angew. Chem. Int. Ed. 47, 5009–5012 (2008)CrossRefGoogle Scholar
  133. 133.
    Jiang, Y., Zhao, H., Zhu, N.N., et al.: A simple assay for direct colorimetric visualization of TNT down to picomolar level by using gold NPs. Angew. Chem. Int. Ed. 47, 8601–8604 (2008)CrossRefGoogle Scholar
  134. 134.
    Li, J., Song, S.P., Liu, X.F., et al.: Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv. Mater. 20, 497–500 (2008)CrossRefGoogle Scholar
  135. 135.
    Ding, L., Cheng, W., Wang, X.J., et al.: Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrates. J. Am. Chem. Soc. 130, 7224–7225 (2008)CrossRefGoogle Scholar
  136. 136.
    Ding, L., Ji, Q.J., Qian, R.C., et al.: Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal. Chem. 82, 1292–1298 (2010)CrossRefGoogle Scholar
  137. 137.
    Xie, M., Hu, J., Long, Y.M., et al.: Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosens. Bioelectron. 24, 1311–1317 (2008)CrossRefGoogle Scholar
  138. 138.
    Xie, H.Y., Xie, M., Zhang, Z.L., et al.: Wheat germ agglutinin-modified trifunctional ­nanospheres for cell recognition. Bioconjug. Chem. 18, 1749–1755 (2007)CrossRefGoogle Scholar
  139. 139.
    Xu, X., Ding, L., Xue, Y.D., et al.: A simple fluorescent method for in situ evaluation of cell surface carbohydrate with a novel lectin-nanoprobe. Analyst 135, 1906–1908 (2010)CrossRefGoogle Scholar
  140. 140.
    Ding, L., Qian, R.C., Xue, Y.D., et al.: In situ scanometric assay of cell surface carbohydrate by glycoNP-aggregation-regulated silver enhancement. Anal. Chem. 82, 5804–5809 (2010)CrossRefGoogle Scholar
  141. 141.
    Han, E., Ding, L., Jin, S., et al.: Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate. Biosens. Bioelectron. (2010). doi: 10.1016/j.bios.2010.10.044 Google Scholar
  142. 142.
    Xue, Y.D., Ding, L., Lei, J.P., et al.: In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells. Anal. Chem. 82, 7112–7118 (2010)CrossRefGoogle Scholar
  143. 143.
    Wang, J.: Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043 (2005)CrossRefGoogle Scholar
  144. 144.
    Chen, X., Tam, U.C., Czlapinski, J.L., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128, 6292–6293 (2006)CrossRefGoogle Scholar
  145. 145.
    Xue, Y.D., Ding, L., Lei, J.P., et al.: A simple electrochemical lectin-probe for in situ ­homogeneous cytosensing and facile evaluation of cell surface glycan. Biosens. Bioelectron. 26, 169–174 (2010)CrossRefGoogle Scholar
  146. 146.
    Han, M., Gao, X., Su, J.Z., et al.: Quantumdot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001)CrossRefGoogle Scholar
  147. 147.
    Weizmann, Y., Patolsky, F., Lioubashevski, O., et al.: Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. J. Am. Chem. Soc. 126, 1073–1080 (2004)CrossRefGoogle Scholar
  148. 148.
    Kim, D., Daniel, W.L., Mirkin, C.A.: Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold NP probes. Anal. Chem. 81, 9183–9187 (2009)CrossRefGoogle Scholar
  149. 149.
    Lee, J.S., Mirkin, C.A.: Chip-based scanometric detection of mercuric ion using DNA-functionalized gold NPs. Anal. Chem. 80, 6805–6808 (2008)CrossRefGoogle Scholar
  150. 150.
    Lidstrom, M.E., Meldrum, D.R.: Life-on-a-chip. Nat. Rev. Microbiol. 1, 158–164 (2003)CrossRefGoogle Scholar
  151. 151.
    Takahashi, Y., Miyamoto, T., Shiku, H., et al.: Electrochemical detection of epidermal growth factor receptors on a single living cell surface by scanning electrochemical microscopy. Anal. Chem. 81, 2785–2790 (2009)CrossRefGoogle Scholar
  152. 152.
    Roberts, W.S., Lonsdale, D.J., Griffiths, J., et al.: Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 23, 301–318 (2007)CrossRefGoogle Scholar
  153. 153.
    Xue, Y.D., Lei, J.P., Xu, X., et al.: Real-time monitoring of cell viability by its nanoscale height change with oxygen reduction as endogenous indicator. Chem. Commun. 46, ­7388–7390 (2010)CrossRefGoogle Scholar
  154. 154.
    Weissleder, R.: Molecular imaging in cancer science. Science 312, 1168–1171 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingP.R. China
  2. 2.World Precision Instruments, Inc.SarasotaUSA
  3. 3.University of Science & TechnologyBeijingP.R. China
  4. 4.University of CaliforniaSan DiegoUSA

Personalised recommendations