Skip to main content

Nanostructured Biosensing and Biochips for DNA Analysis

  • Chapter
  • First Online:
  • 2269 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are required for the storage and expression of genetic information. DNA is present not only in chromosomes in the nucleus of eukaryotic organism, but also in mitochondria and in the chloroplasts of plants. Prokaryotic cells, which lack nuclei, have a single chromosome but also contain nonchromosomal DNA in the form of plasmids. The DNA contained in a fertilized egg encodes the information that directs the development of an organism. This development may involve the production of billions of cells. Each of these cells is specialized, expressing only those functions that are required for it to perform its role in maintaining the organism. Therefore, the DNA must be able not only to replicate precisely each time a cell divides, but also to have the information that it contains be selectively expressed. RNA participates in the expression of the genetic information stored in the DNA [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feng ZH, Qu S.: Biochemistry and molecular biology. Beijing: People’s Medical Publishing House, 360–361 (2007)

    Google Scholar 

  2. http://www.ghr.nlm.nih.gov/handbook/testing/genetictesting

  3. Sequeiros J, Guimarães B.: Definitions of genetic testing. http://www.nlm.nih.gov/medlineplus/genetictesting.html. EuroGentest Network of Excellence Project. Accessed 9 September 2011

  4. Holtzman, N.A., Murphy, P.D., Watson, M.S., et al.: Predictive genetic testing: from basic research to clinical practice. Science 278, 602–605 (1997)

    CAS  Google Scholar 

  5. Akasaka, T., Muramatsu, M., Ohno, H., et al.: Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood 88, 985–994 (1996)

    CAS  Google Scholar 

  6. Marras, S.A.E., Kramer, F.R., Tyagi, S.: Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal. Biomol. Eng 14, 151–156 (1998)

    Google Scholar 

  7. Mekus, F., Dork, T., Deufel, T., et al.: Analysis of microsatellites by direct blotting electrophoresis and chemiluminescence detection. Electrophoresis 16, 1886–1888 (1995)

    CAS  Google Scholar 

  8. Ye, Y.K., Ju, H.X.: DNA electrochemical behaviors, recognition and sensing by combining with PCR technique. Sensors 3, 128–145 (2003)

    CAS  Google Scholar 

  9. Erdem, A.: Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74, 318–325 (2007)

    CAS  Google Scholar 

  10. Zheng, L.X., O’Connell, M.J., Doorn, S.K., et al.: Ultralong single-wall carbon nanotubes. Nat. Mater. 3, 673–676 (2004)

    CAS  Google Scholar 

  11. Trojanowicz, M.: Analytical applications of carbon nanotubes: a review. Trends Anal. Chem 25, 480–489 (2006)

    CAS  Google Scholar 

  12. Rivas, G.A., Rubianes, M.D., Rodríguez, M.C., et al.: Carbon nanotubes for electrochemical biosensing. Talanta 74, 291–307 (2007)

    CAS  Google Scholar 

  13. He, P.G., Xu, Y., Fang, Y.Z.: Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim. Acta 152, 175–186 (2006)

    CAS  Google Scholar 

  14. Daniel, S., Rao, T.P., Rao, K.S., et al.: A review of DNA functionalized-grafted carbon nanotubes and their characterization. Sensor. Actuator. B Chem 122, 672–682 (2007)

    Google Scholar 

  15. Munge, B., Liu, G.D., Collins, G., et al.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005)

    CAS  Google Scholar 

  16. Du, M., Yang, T., Zhang, Y.C., et al.: Sensitively electrochemical sensing for sequence-specific detection of phosphinothricin acetyltransferase gene: layer-by-layer films of poly-l-lysine and Au-carbon nanotube hybrid. Electroanalysis 21, 2521–2526 (2009)

    CAS  Google Scholar 

  17. Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    CAS  Google Scholar 

  18. Yang, X.Y., Lu, Y.H., Ma, Y.F., et al.: DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene. Biotechnol. Lett. 29, 1775–1779 (2007)

    CAS  Google Scholar 

  19. Zhang, W., Yang, T., Huang, D.M., et al.: Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin. Chem. Lett. 19, 589–591 (2008)

    CAS  Google Scholar 

  20. Zhang, W., Yang, T., Zhuang, X.M., et al.: An ionic liquid supported CeO2 nanoshuttles–carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens. Bioelectron. 24, 2417–2422 (2009)

    CAS  Google Scholar 

  21. Ye, Y.K., Ju, H.X.: Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron. 21, 735–741 (2005)

    CAS  Google Scholar 

  22. Tang, X.W., Bansaruntip, S., Nakayama, N., et al.: Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–1636 (2006)

    CAS  Google Scholar 

  23. Zhu, N.N., Lin, Y.Q., Yu, P., et al.: Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA. Anal. Chim. Acta 650, 44–48 (2009)

    CAS  Google Scholar 

  24. Berti, F., Lozzi, L., Palchetti, I., et al.: Aligned carbon nanotube thin films for DNA electrochemical sensing. Electrochim. Acta 54, 5035–5041 (2009)

    CAS  Google Scholar 

  25. Wang, X.L., Jiao, K.: Sensitive electrochemical detection of the DNA damage in situ by electro-Fenton reaction based on Fe@Fe2O3 core-shell nanonecklace and multi-walled carbon nanotube composite. Anal. Chim. Acta 664, 34–39 (2010)

    CAS  Google Scholar 

  26. Wittenberg, N.J., Haynes, C.L.: Using nanoparticles to push the limits of detection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 1, 237–254 (2009)

    CAS  Google Scholar 

  27. Wang, J.: Nanomaterial-based amplified transduction of biomolecular interactions. Small 1, 1036–1043 (2005)

    CAS  Google Scholar 

  28. Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130, 421–426 (2005)

    CAS  Google Scholar 

  29. Wang, J.: Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 19, 769–776 (2007)

    Google Scholar 

  30. Liu, G.D., Lin, Y.H.: Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 74, 308–317 (2007)

    CAS  Google Scholar 

  31. Moon, S., Kim, D.J., Kim, K., et al.: Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization. Appl. Opt. 49, 484–491 (2010)

    CAS  Google Scholar 

  32. Li, J., Song, S.P., Li, D., et al.: Multi-functional crosslinked Au nanoaggregates for the amplified optical DNA detection. Biosens. Bioelectron. 24, 3311–3315 (2009)

    CAS  Google Scholar 

  33. Xu, W., Xue, X.J., Li, T.H., et al.: Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. 48, 6849–6852 (2009)

    CAS  Google Scholar 

  34. Qian, X.M., Zhou, X., Nie, S.M.: Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc. 130, 14934–14935 (2008)

    Google Scholar 

  35. Zheng, G.F., Daniel, W.L., Mirkin, C.A.: A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. J. Am. Chem. Soc. 130, 9644–9645 (2008)

    CAS  Google Scholar 

  36. Lu, W., Jin, Y., Wang, G., et al.: Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanoparticle labeled DNA as probe onto titanium dioxide electrode. Biosens. Bioelectron. 23, 1534–1539 (2008)

    CAS  Google Scholar 

  37. Zheng, J., Feng, W., Lin, L., et al.: A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosens. Bioelectron. 23, 341–347 (2007)

    CAS  Google Scholar 

  38. Olofsson, L., Rindzevicius, T., Pfeiffer, I., et al.: Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection. Langmuir 19, 10414–10419 (2003)

    CAS  Google Scholar 

  39. Glynou, K., Ioannou, P.C., Christopoulos, T.K., et al.: Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 75, 4155–4160 (2003)

    CAS  Google Scholar 

  40. Liao, K.T., Cheng, J.T., Li, C.L., et al.: Ultra-sensitive detection of mutated papillary thyroid carcinoma DNA using square wave stripping voltammetry method and amplified gold nanoparticle biomarkers. Biosens. Bioelectron. 24, 1899–1904 (2009)

    CAS  Google Scholar 

  41. Pinijsuwan, S., Rijiravanich, P., Somasundrum, M., et al.: Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification. Anal. Chem. 80, 6779–6784 (2008)

    CAS  Google Scholar 

  42. Selvaraju, T., Das, J., Jo, K., et al.: Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. Langmuir 24, 9883–9888 (2008)

    CAS  Google Scholar 

  43. Chiu, C.S., Lee, H.M., Kuo, C.T., et al.: Immobilization of DNA-Au nanoparticles on aminosilane-functionalized aluminum nitride epitaxial films for surface acoustic wave sensing. Appl. Phys. Lett. 93, 163106 (2008)

    Google Scholar 

  44. Shang, L., Wang, Y.L., Huang, L.J., et al.: Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application. Langmuir 23, 7738–7744 (2007)

    CAS  Google Scholar 

  45. Niu, S.Y., Han, B., Cao, W., et al.: Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode. Anal. Chim. Acta 651, 42–47 (2009)

    CAS  Google Scholar 

  46. Higuchi, A., Siao, Y.D., Yang, S.T., et al.: Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal. Chem. 80, 6580–6586 (2008)

    CAS  Google Scholar 

  47. Karadeniz, H., Erdem, A., Caliskan, A., et al.: Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes. Electrochem. Commun. 9, 2167–2173 (2007)

    CAS  Google Scholar 

  48. Wu, S., Zhao, H.T., Ju, H.X., et al.: Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem. Commun. 8, 1197–1203 (2006)

    CAS  Google Scholar 

  49. Ting, B.P., Zhang, J., Gao, Z.Q., et al.: A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens. Bioelectron. 25, 282–287 (2009)

    CAS  Google Scholar 

  50. Wang, X.L., Yang, T., Jiao, K.: Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron. 25, 668–673 (2009)

    CAS  Google Scholar 

  51. Mathur, S., Erdem, A., Cavelius, C., et al.: Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition. Sensor. Actuat. B Chem 136, 432–437 (2009)

    Google Scholar 

  52. Dong, H.F., Gao, W.C., Yan, F., et al.: Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511–5517 (2010)

    CAS  Google Scholar 

  53. Dong, H.F., Yan, F., Ji, H.X., et al.: Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: step-wise self-assembly, characterization, and applications for sub-­femtomolar electrochemical detection of DNA hybridization. Adv. Funct. Mater. 20, 1–7 (2010)

    Google Scholar 

  54. Chen, C.P., Ganguly, A., Wang, C.H., et al.: Label-free dual sensing of DNA molecules using GaN nanowires. Anal. Chem. 81, 36–42 (2009)

    CAS  Google Scholar 

  55. Xia, Q., Chen, X., Liu, J.H.: Cadmium sulfide-modified GCE for direct signal-amplified sensing of DNA hybridization. Biophys. Chem. 136, 101–107 (2008)

    CAS  Google Scholar 

  56. Zhang, W., Yang, T., Li, X., et al.: Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Biosens. Bioelectron. 25, 428–434 (2009)

    Google Scholar 

  57. Lee, J., Wang, A.A., Rheem, Y.W., et al.: DNA assisted assembly of multisegmented nanowires. Electroanalysis 19, 2287–2293 (2007)

    CAS  Google Scholar 

  58. Wang, X., Ozkan, C.S.: Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett. 8, 398–404 (2008)

    CAS  Google Scholar 

  59. Stern, E., Vacic, A., Reed, M.A.: Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron. Dev 55, 3119–3130 (2008)

    CAS  Google Scholar 

  60. Zhang, X.R., Qi, B.P., Li, Y., et al.: Amplified electrochemical aptasensor for thrombin based on bio-barcode method. Biosens. Bioelectron. 25, 259–262 (2009)

    CAS  Google Scholar 

  61. Wahab, R., Kim, Y.S., Hwang, I.H., et al.: A non-aqueous synthesis, characterization of zinc oxide nanoparticles and their interaction with DNA. Synthet. Met 159, 2443–2452 (2009)

    CAS  Google Scholar 

  62. Qin, P.Z., Niu, C.G., Zeng, G.M., et al.: Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta 80, 991–995 (2009)

    CAS  Google Scholar 

  63. Golub, E., Pelossof, G., Freeman, R., et al.: Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal. Chem. 81, 9291–9298 (2009)

    CAS  Google Scholar 

  64. Lee, D., Yoo, M., Seo, H., et al.: Enhanced mass sensitivity of ZnO nanorod-grown quartz crystal microbalances. Sensor. Actuat. B Chem 135, 444–448 (2009)

    Google Scholar 

  65. Fortina, P., Graves, D., Stoeckert, C., et al.: Technology options and applications of DNA microarrays. In: Cheng, J., Kricka, L.J. (eds.) Biochip technology, pp. 185–216. Harwood Academic Publishers, Philadelphia (2001)

    Google Scholar 

  66. Gwynne P, Heebner G.: Technologies in DNA chips and microarrays: II. http://www.sciencemag.org/products/technologies_dnachips.dtl (2001)

  67. Bally, M., Halter, M., Vörös, J., et al.: Optical microarray biosensing techniques. Surf. Interface Anal. 38, 1442–1458 (2006)

    CAS  Google Scholar 

  68. Kang, S.H., Kim, Y.J., Yeung, E.S.: Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy. Anal. Bioanal. Chem 387, 2663–2671 (2007)

    CAS  Google Scholar 

  69. Oillic, C., Mur, P., Blanquet, E., et al.: DNA microarrays on silicon nanostructures: optimization of the multilayer stack for fluorescence detection. Biosens. Bioelectron. 22, 2086–2092 (2007)

    CAS  Google Scholar 

  70. Sun, Y., Fan, W.H., McCann, M.P., et al.: Microarray gene expression analysis free of reverse transcription and dye labeling. Anal. Biochem. 345, 312–319 (2005)

    CAS  Google Scholar 

  71. Vo-Dinh, T., Dhawan, A., Norton, S.J., et al.: Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J. Phys. Chem. C 114, 7480–7488 (2010)

    CAS  Google Scholar 

  72. Sunkara, V., Hong, B.J., Park, J.W.: Sensitivity enhancement of DNA microarray on nano-scale controlled surface by using a streptavidin–fluorophore conjugate. Biosens. Bioelectron. 22, 1532–1537 (2007)

    CAS  Google Scholar 

  73. Qin, J., Jones, R.C., Ramakrishnan, R.: Studying copy number variations using a nanofluidic platform. Nucleic Acids Res. 36, e116 (2008)

    Google Scholar 

  74. Sabella, S., Vecchio, G., Cingolani, R., et al.: Real-time PCR in a plastic chip based on solid state FRET. Langmuir 24, 13266–13269 (2008)

    CAS  Google Scholar 

  75. Yeung, S.W., Lee, T.M.H., Cai, H., et al.: A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res. 34, e118 (2006)

    Google Scholar 

  76. Schröder, H., Hoffmann, L., Müller, J., et al.: Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds. Small 5, 1547–1552 (2009)

    Google Scholar 

  77. Cheng, Y.T., Pun, C.C., Tsai, C.Y., et al.: An array-based CMOS biochip for electrical detection of DNA with multilayer self-assembly gold nanoparticles. Sensor. Actuat. B Chem 109, 249–255 (2005)

    Google Scholar 

  78. Hsiao, C.R., Chen, C.H.: Characterization of DNA chips by nanogold staining. Anal. Biochem. 389, 118–123 (2009)

    CAS  Google Scholar 

  79. Sakata, T., Miyahara, Y.: Charged nanosphere-coupled biotransistor for highly sensitive genetic analysis. Curr. Appl. Phys. 9, e210–e213 (2009)

    Google Scholar 

  80. Cheng, Y.T., Tsai, C.Y., Chen, P.H.: Development of an integrated CMOS DNA detection biochip. Sensor. Actuat. B Chem 120, 758–765 (2007)

    Google Scholar 

  81. Chang, T.L., Tsai, C.Y., Sun, C.C., et al.: Electrical detection of DNA using gold and magnetic nanoparticles and bio bar-code DNA between nanogap electrodes. Microelectron. Eng. 83, 1630–1633 (2006)

    CAS  Google Scholar 

  82. Kim, H., Takei, H., Yasuda, K.: Quantitative evaluation of a gold-nanoparticle labeling method for detecting target DNAs on DNA microarrays. Sensor. Actuat. B Chem 144, 6–10 (2010)

    Google Scholar 

  83. Schuler, T., Asmus, T., Fritzsche, W., et al.: Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA. Biosens. Bioelectron. 24, 2077–2084 (2009)

    Google Scholar 

  84. Ji, M.J., Hou, P., Li, S., et al.: Colorimetric silver detection of methylation using DNA microarray coupled with linker-PCR. Clin. Chim. Acta 342, 145–153 (2004)

    CAS  Google Scholar 

  85. Baek, T.J., Park, P.Y., Han, K.N., et al.: Development of a photodiode array biochip using a bipolar semiconductor and its application to detection of human papilloma virus. Anal. Bioanal. Chem. 390, 1373–1378 (2008)

    CAS  Google Scholar 

  86. Storhoff, J.J., Marla, S.S., Bao, P., et al.: Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 19, 875–883 (2004)

    CAS  Google Scholar 

  87. Lytton-Jean, A.K.R., Han, M.S., Mirkin, C.A.: Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Anal. Chem. 79, 6037–6041 (2007)

    CAS  Google Scholar 

  88. Burmeister, J., Bazilyanska, V., Grothe, K., et al.: Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA. Anal. Bioanal. Chem. 379, 391–398 (2004)

    CAS  Google Scholar 

  89. Tang, J.F., Zhou, L., Gao, W.J., et al.: Visual DNA microarrays for simultaneous detection of human immunodeficiency virus type-1 and Treponema pallidum coupled with multiplex asymmetric polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 65, 372–378 (2009)

    CAS  Google Scholar 

  90. Graham, D.L., Ferreira, H.A., Feliciano, N., et al.: Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles. Sensor. Actuat. B Chem 107, 936–944 (2005)

    Google Scholar 

  91. Martins, V.C., Cardoso, F.A., Germano, J., et al.: Femtomolar limit of detection with a magnetoresistive biochip. Biosens. Bioelectron. 24, 2690–2695 (2009)

    CAS  Google Scholar 

  92. Husale, S., Persson, H.H.J., Sahin, O.: DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462, 24–31 (2009)

    Google Scholar 

  93. Sun, Y., Jacobson, K.B., Golovlev, V.: Label-free detection of biomolecules on microarrays using surface-colloid interaction. Anal. Biochem. 361, 244–252 (2007)

    CAS  Google Scholar 

  94. Hiep, H.M., Kerman, K., Endo, T., et al.: Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction. Anal. Chim. Acta 661, 111–116 (2010)

    CAS  Google Scholar 

  95. Chang, H.X., Yuan, Y., Shi, N.L., et al.: Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal. Chem. 79, 5111–5115 (2007)

    CAS  Google Scholar 

  96. Tokonami, S., Shiigi, H., Nagaoka, T.: Preparation of nanogapped gold nanoparticle array for DNA detection. Electroanalysis 20, 355–360 (2008)

    CAS  Google Scholar 

  97. Wang, L.J., Liu, Q.J., Hu, Z.Y., et al.: A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. Talanta 78, 647–652 (2009)

    CAS  Google Scholar 

  98. Moreno, M., Rincon, E., Pére, J.M., et al.: Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes. Biosens. Bioelectron. 25, 778–783 (2009)

    CAS  Google Scholar 

  99. Tung, C.K., Riehn, R., Austin, R.H.: Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes. Biomicrofluidics 3, 031101 (2009)

    Google Scholar 

  100. Soto, C.M., Blaney, K.M., Dar, M., et al.: Cowpea mosaic virus nanoscaffold as signal enhancement for DNA microarrays. Biosens. Bioelectron. 25, 48–54 (2009)

    CAS  Google Scholar 

  101. Stefano, L.D., Arcari, P., Lamberti, A., et al.: DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7, 214–221 (2007)

    Google Scholar 

  102. Lee, S., Chung, B.H., Kang, S.H.: Dual-color prism-type TIRFM system for direct detection of single-biomolecules on nanoarray biochips. Curr. Appl. Phys. 8, 700–705 (2008)

    Google Scholar 

  103. Cui, D.X., Tian, F.R., Ozkan, C.S., et al.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85 (2005)

    CAS  Google Scholar 

  104. Xu, L., Yu, H., Akhras, M.S., et al.: Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008)

    CAS  Google Scholar 

  105. Sokuler, M., Gheber, L.A.: Nano fountain pen manufacture of polymer lenses for nano-biochip applications. Nano Lett. 6, 848–853 (2006)

    CAS  Google Scholar 

  106. Park, J.U., Lee, J.H., Paik, U., et al.: Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 8, 4210–4216 (2008)

    CAS  Google Scholar 

  107. Gerion, D., Chen, F.Q., Kannan, B., et al.: Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and nicroarrays. Anal. Chem. 75, 4766–4772 (2003)

    CAS  Google Scholar 

  108. Strelau, K.K., Kretschmer, R., Möller, R., et al.: SERS as tool for the analysis of DNA-chips in a microfluidic platform. Anal. Bioanal. Chem. 396, 1381–1384 (2010)

    CAS  Google Scholar 

  109. Oillic, C., Mur, P., Blanquet, E., et al.: Silicon nanostructures for DNA biochip applications. Mater. Sci. Eng. C 27, 1500–1503 (2007)

    CAS  Google Scholar 

  110. Zhang, L., Gu, F.X., Tong, L.M., et al.: Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluid. Nanofluid. 5, 727–732 (2008)

    Google Scholar 

  111. Sano, T., Iguchi, N., Iida, K., et al.: Size-exclusion chromatography using self-organized nanopores in anodic porous alumina. Appl. Phys. Lett. 83, 4438–4430 (2003)

    CAS  Google Scholar 

  112. Doherty, E.A.S., Kan, C.W., Paegel, B.M., et al.: Sparsely cross-linked “nanogel” matrixes as fluid, mechanically stabilized polymer networks for high-throughput microchannel DNA sequencing. Anal. Chem. 76, 5249–5256 (2004)

    CAS  Google Scholar 

  113. Raphael, M.P., Christodoulides, J.A., Qadri, S.N., et al.: The use of DNA molecular beacons as nanoscale temperatureprobes for microchip-based biosensors. Biosens. Bioelectron. 24, 888–892 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Nanostructured Biosensing and Biochips for DNA Analysis. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9622-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9621-3

  • Online ISBN: 978-1-4419-9622-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics