Skip to main content

Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI

  • Conference paper
  • First Online:
  • 1192 Accesses

Abstract

Most automated methods for cardiac segmentation are not directly applicable to tagged MRI (tMRI) because they do not handle all of the analysis challenges: tags obscure heart boundaries, low contrast, image artifacts, and radial image planes. Other methods do not process all acquired tMRI data or do not ensure tissue incompressibility. In this chapter, we present a cardiac segmentation method for tMRI which requires no user input, suppresses image artifacts, extracts heart features using 3D grayscale morphology, and constructs a biventricular model from the data that ensures the near incompressibility of heart tissue. We project landmarks of 3D features along curves in the solution to a PDE, and embed biomechanical constraints using the finite element method. Testing on normal and diseased subjects yields an RMS segmentation accuracy of ∼ 2 mm, comparing favorably with manual segmentation, interexpert variability and segmentation methods for nontagged cine MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989;172:349–350.

    Google Scholar 

  2. Zerhouni E, Parish D, Rogers W, Yang A, Shapiro E. Human heart: tagging with MR imaging-a method for non-invasive assessment of myocardial motion. Radiology. 1988;169:59–63.

    Google Scholar 

  3. Haber I, Metaxas D, Axel L. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal. 2000;4(4):335–355.

    Article  Google Scholar 

  4. Tustison N, Amini A. Myocardial kinematics based on tagged MRI from volumetric NURBS models. In: SPIE. vol. 5369; 2003.

    Google Scholar 

  5. Young A, Axel L. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization–a model-based approach. Radiology. 1992;185:241–247.

    Google Scholar 

  6. Osman N, Prince J. Angle images for measuring heart motion from tagged MRI. In: ICIP; 1998. p.704–8.

    Google Scholar 

  7. Young A, Fayad Z, Axel L. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol. 1996;271:H2677–H2688.

    Google Scholar 

  8. Hu Z, Metaxas D, Axel L. In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal. 2003;7(4):435–444.

    Article  Google Scholar 

  9. Dornier C, Ivancevic M, Lecoq G, Osman N, Foxall D, Righetti A, et al. Assessment of the left ventricle ejection fraction by MRI tagging. In: ISMRM; 2002.

    Google Scholar 

  10. Guttman M, Prince J, McVeigh E. Tag and Contour Detection in Tagged MR Images of the Left Ventricle. IEEE Trans Med Imaging. 1994;13(1):74–88.

    Article  Google Scholar 

  11. Montillo A, Metaxas D, Axel L. Automated deformable model-based segmentation of the left and right ventricles in tagged cardiac MRI. In: MICCAI; 2003. p. 507–515.

    Google Scholar 

  12. Qian Z, Metaxas D, Axel L. Boosting and nonparametric based tracking of tagged MRI cardiac boundaries. In: MICCAI; 2006. p. 636–644.

    Google Scholar 

  13. Huang J, Huang X, Metaxas D, Axel L. Adaptive Metamorphs Model for 3D Medical Image Segmentation. In: MICCAI; 2007.

    Google Scholar 

  14. Sundar H, Davatzikos C, Biros G. Biomechanically-Constrained 4D Estimation of Myocardial Motion. In: MICCAI; 2009.

    Google Scholar 

  15. Chandrashekara R, Mohiaddin R, Razavi R, Rueckert D. Nonrigid Image Registration with Subdivision Lattices: Application to Cardiac MR Image Analysis. In: MICCAI; 2007.

    Google Scholar 

  16. Zhang S, Wang X, Metaxas D, Chen T, Axel L. LV surface reconstruction from sparse tMRI using laplacian surface deformation and optimization. In: ISBI; 2009. p. 698–701.

    Google Scholar 

  17. Yang L, Georgescu B, Zheng Y, Meer P, Comaniciu D. 3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In: CVPR; 2008.

    Google Scholar 

  18. Zhu Y, Papademetris X, Sinusas A, Duncan JS. Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint. MICCAI. 2007;10(Pt 1): 44–51.

    Google Scholar 

  19. Ecabert O, Peters J, Schramm H, Lorenz C, Von Berg J, Walker MJ, et al. Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging. 2008; 27(9):1189–1202.

    Article  Google Scholar 

  20. Bistoquet A, Oshinski J, Skrinjar O. Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model. Med Image Anal. 2008;12(1):69–85.

    Article  Google Scholar 

  21. Zhuge Y, Udupa J, Liu J, Saha P, Iwanaga T. A Scale-Based Method for Correcting Background Intensity Variation in Acquired Images. In: SPIE; 2002. p. 1103–1111.

    Google Scholar 

  22. Nyul L, Udupa J, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging. 2000;19(2):143–150.

    Article  Google Scholar 

  23. Herman G, Zheng J, Bucholtz C. Shape-based interpolation. IEEE Comput Graph. 1992;p. 69–80.

    Google Scholar 

  24. Xu C, Prince J. Generalized Gradient Vector Flow external forces for active contours. Sig Proc. 1998;71:131–9.

    Article  MATH  Google Scholar 

  25. Cook R, Malkus D, M P. Concepts and applications of finite element analysis. Wiley; 1989.

    Google Scholar 

  26. Macneal R. Finite Elements: Their Design and Performance. Marcel Dekker; 1994.

    Google Scholar 

  27. Qian Z, Metaxas D, Axel L. Learning methods in segmentation of tMRI. ISBI; 2007. p. 688–691.

    Google Scholar 

  28. Herzka D, Guttman M, McVeigh E. Myocardial tagging with SSFP. Magn Reson Med. 2003;49(6):329–340.

    Article  Google Scholar 

  29. Ryf S, Spiegel MA, Gerber M, Boesiger P. Myocardial tagging with 3D-CSPAMM. J of Mag Res Imaging. 2002;16:320–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Montillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Montillo, A., Metaxas, D., Axel, L. (2011). Incompressible Biventricular Model Construction and Heart Segmentation of 4D Tagged MRI. In: Wittek, A., Nielsen, P., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9619-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9619-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9618-3

  • Online ISBN: 978-1-4419-9619-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics