Skip to main content

Liquid Thin Film Hydrodynamics: Dewetting and Pattern Formation

  • Chapter
  • First Online:
Mechanics Over Micro and Nano Scales
  • 1705 Accesses

Abstract

Ultra-thin polymer films become unstable due to various types of interaction forces like van der Waals interaction, steric forces, molecular level recoiling, sudden release of residual stresses or due to the presence of defects on substrate or the film, resulting in disintegration and rupture of the film, which is also associated with morphological evolution and formation of mesoscale surface features. In this chapter we introduce the concept of dewetting first, followed by a brief theoretical discussion on the conditions under which a thin liquid film can spontaneously become unstable, based on a linear stability analysis. We subsequently discuss the morphological evolution sequence under true experimental conditions. The instability-mediated structures are inherently random and isotropic, thereby having limited practical utility. We discuss how dewetting on a topographically patterned substrate might be useful in imposing long-range order to the dewetted structures. Finally, we discuss some recent developments on suppressing dewetting in unstable film by incorporation of nanoparticles or nanofillers in extremely low amount to the polymer matrix. This approach of stabilizing ultra-thin films will be extremely useful from the standpoint of coatings, which should not degrade and disintegrate with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd CR, Gorman CB (2002) The genesis of molecular electronics. Angew. Chem. Int. Ed. 41:4378–4400

    Article  Google Scholar 

  2. Kim DH, Rogers JA (2008) Stretchable electronics: Materials strategies and devices. Adv. Mater. 20:4887–4892

    Article  Google Scholar 

  3. Scott BJ, Wirnsberger G, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13:3140–3150

    Article  Google Scholar 

  4. Sato C, Kubo S, Gu ZZ (2009) Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc. Chem. Res. 42:1–10

    Article  Google Scholar 

  5. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2:461–463

    Article  Google Scholar 

  6. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21:8978–8981

    Article  Google Scholar 

  7. Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN (2004) Microfabricated platform for studying stem cell fates. Biotechnol. Bioeng. 88:399–415

    Article  Google Scholar 

  8. Sharma A, Ruckenstein E (1986) The role of lipid abnormalities, aqueous and mucus deficiencies in the tear film breakup, and implications for tear substitutes and contact lens tolerance. J. Colloid Interface Sci. 111:8–34

    Article  Google Scholar 

  9. Ruckenstein E, Jain RK (1974) Spontaneous rupture of thin liquid films. J. Chem. Soc., Faraday Trans. II 70:132

    Article  Google Scholar 

  10. Derjaguin BV (1989) Theory of Stability of Thin Films and Colloids. New York, NY: Plenum

    Google Scholar 

  11. Israelachvilli JN (1985) Intermolecular and Surface Forces. New York, NY: Academic

    Google Scholar 

  12. Williams MB, Davis SH (1982) Nonlinear theory of film rupture. J. Colloid Interface Sci. 90:220–228

    Article  Google Scholar 

  13. Sharma A, Ruckenstein E (1986) An analytical nonlinear theory of thin film rupture and its application to wetting Films. J. Colloid Interface Sci. 113:456–479

    Article  Google Scholar 

  14. Sharma A (1993) Relationship of thin film stability and macroscopic parameters of wetting in the systems. Langmuir 9:861–869

    Article  Google Scholar 

  15. Sharma A, Khanna R (1998) Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81:3463–3466

    Article  Google Scholar 

  16. Sharma A, Khanna R (1999) Pattern formation in unstable thin liquid films under the influence of antagonistic short- and long-range forces. J. Chem. Phys. 110:4929–4936

    Article  Google Scholar 

  17. Ghatak A, Khanna R, Sharma A (1999) Dynamics and morphology of holes in dewetting of thin films. J. Colloid Interface Sci. 212:483–494

    Article  Google Scholar 

  18. Sharma A, Reiter G (2002) Morphological phase transitions in spontaneous dewetting of thin films on homogeneous and heterogeneous surfaces. Phase Trans. 75:377–399

    Article  Google Scholar 

  19. Sharma A (2003) Many paths to dewetting of thin films: Anatomy and physiology of surface instability. Euro. Phys. J. E 12:397–408

    Article  Google Scholar 

  20. Reiter G (1992) Dewetting of thin polymer films. Phys. Rev. Lett. 68:75–78

    Article  MathSciNet  Google Scholar 

  21. Reiter G (1993) Unstable thin polymer films: Rupture and dewetting processes. Langmuir 9:1344–1351

    Article  Google Scholar 

  22. Reiter G (1994) Dewetting as a probe of polymer mobility in thin films. Macromolecules 27:3046–3052

    Article  Google Scholar 

  23. Xie R, Karim A, Douglas JF, Han CC, Weiss RA (1998) Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81:1251–1254

    Article  Google Scholar 

  24. Morariu MD, Schäffer E, Steiner U (2004) Molecular forces caused by the confinement of thermal noise. Phys. Rev. Lett. 92:156102 (4 pages)

    Article  Google Scholar 

  25. Reiter G, Khanna R, Sharma A (2000) Enhanced instability in thin liquid films by improved compatibility. Phys. Rev. Lett. 85:1432–1435

    Article  Google Scholar 

  26. Reiter G, Sharma A (1996) Instability of thin polymer films on coated substrates: Rupture, dewetting, and drop formation. J. Colloid Interface Sci. 178:383–399

    Article  Google Scholar 

  27. Seemann R, Herminghaus S, Jacobs K (2001) Shape of a liquid front upon dewetting. Phys. Rev. Lett. 87:196101 (4 pages)

    Article  Google Scholar 

  28. Seemann R, Herminghaus S, Jacobs K (2001) Dewetting patterns and molecular forces: A reconciliation. Phys. Rev. Lett. 86:5534–5537

    Article  Google Scholar 

  29. Seemann R, Herminghaus S, Jacobs K (2001) Gaining control of pattern formation of dewetting liquid films. J. Phys.: Condens. Matter 13:4915–4938

    Article  Google Scholar 

  30. Becker J, Grun G, Seeman R, Mantz H, Jacobs K, Mecke KR, Blossey R (2003) Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2:59–64

    Article  Google Scholar 

  31. Al Akhrass S, Ostaci RV, Grohens Y, Drockenmuller E, Reiter G (2008) Influence of progressive cross-linking on dewetting of polystyrene thin films. Langmuir 24:1884–1890

    Article  Google Scholar 

  32. Müller M, MacDowell LG, Müller-Buschbaum P, Wunnicke O, Stamm M (2001) Nano-dewetting: Interplay between van der Waals- and short-ranged interactions. J. Chem. Phys. 115:9960–9969

    Article  Google Scholar 

  33. Ashley KM, Meredith JC, Amis E, Raghavan D, Karim A (2003) Combinatorial investigation of dewetting: Polystyrene thin films on gradient hydrophilic surfaces. Polymer 44:769–772

    Article  Google Scholar 

  34. Du B, Xie F, Wang Y, Yang Z, Tsui OKC (2002) Dewetting of polymer films with built-in topographical defects. Langmuir 18:8510–8517

    Article  Google Scholar 

  35. Konnur R, Kargupta K, Sharma A (2000) Instability and morphology of thin liquid films on chemically heterogeneous substrates. Phys. Rev. Lett. 84:931–934

    Article  Google Scholar 

  36. Mittal J, Sharma A (2002) Instability of thin liquid films by density variations: A new mechanism that mimics spinodal dewetting. Phys. Rev. Lett. 89:186101 (4 pages)

    Article  Google Scholar 

  37. Yang MH, Hou SY, Chang YL, Yang ACM (2006) Molecular recoiling in polymer thin film dewetting. Phys. Rev. Lett. 96:066105 (4 pages)

    Article  Google Scholar 

  38. Seeman R, Jacobs K, Landfester K, Herminghaus S (2006) Freezing of polymer thin films and surfaces: The small molecular weight puzzle. J. Polym. Sci.: Part B: Polym. Phys. 44:2968–2979

    Article  Google Scholar 

  39. Muller-Buschabaum P (2003) Influence of surface cleaning on dewetting of thin polystyrene films. Eur. Phys. J. E 12:443–448

    Article  Google Scholar 

  40. Reiter G, Hamieh M, Damman P, Sclavons S, Gabriele S, Vilmin T, Raphaël E (2005) Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 4:754–758

    Article  Google Scholar 

  41. Bardon S, Valignat MP, Cazabat AM, Stocker W, Rabe JP (2004) Study of liquid crystal prewetting films by atomic force microscopy in tapping mode. Langmuir 14:2916–2924

    Article  Google Scholar 

  42. Fukuzawa K, Shimuta T, Yoshida T, Mitsuya Y, Zhang H (2006) Direct visualization of dewetting of molecularly thin liquid films on solid surfaces. Langmuir 22:6951–6955

    Article  Google Scholar 

  43. Huang E, Rockford L, Russell TP, Hawker CJ (1998) Nanodomain control in copolymer thin films. Nature 395:757–756

    Article  Google Scholar 

  44. Higgins M, Jones RAL (2000) Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 404:476–478

    Article  Google Scholar 

  45. Mayer E, Braun HG (2000) Controlled dewetting processes on microstructured surfaces – a new procedure for thin film microstructuring. Macromol. Mater. Eng. 276/277:44–50

    Article  Google Scholar 

  46. Sehgal A, Ferreiro V, Douglas JF, Amis EJ, Karim A (2002) Pattern-directed dewetting of ultrathin polymer films. Langmuir 18:7041–7048

    Article  Google Scholar 

  47. Zhang Z, Wang Z, Xing R, Han Y (2003) How to form regular polymer microstructures by surface-pattern-directed dewetting. Surf. Sci. 539:129–136

    Article  Google Scholar 

  48. Julthongpiput D, Zhang W, Douglas JF, Karim A, Fasolka MJ (2007) Pattern-directed to isotropic dewetting transition in polymer films on micropatterned surfaces with differential surface energy contrast. Soft Matter 3:613–618

    Article  Google Scholar 

  49. Geoghegan M, Wang C, Rhese N, Magerle R, Krausch G (2005) Thin polymer films on chemically patterned, corrugated substrates. J. Phys. Condens. Matter 17:S389–S402

    Article  Google Scholar 

  50. Mukherjee R, Gonuguntla M, Sharma A (2007) Meso-patterning of thin polymer films by controlled dewetting: From nano-droplet arrays to membranes. J. Nanosci. Nanotechnol.7:2069–2075

    Article  Google Scholar 

  51. Mukherjee R, Bandyopadhyay D, Sharma A (2008) Control of morphology in pattern directed dewetting of thin polymer films. Soft Matter 4:2086–2097

    Article  Google Scholar 

  52. Kargupta K, Sharma A (2001) Templating of thin films induced by dewetting on patterned surfaces. Phys. Rev. Lett. 86:4536–4539

    Article  Google Scholar 

  53. Kargupta K, Sharma A (2003) Mesopatterning of thin liquid films by templating on chemically patterned complex substrates. Langmuir 19:5153–5163

    Article  Google Scholar 

  54. Kargupta K, Sharma A (2002) Morphological self-organization by dewetting in thin films on chemically patterned substrates. J. Chem. Phys. 116:3042–3051

    Article  Google Scholar 

  55. Kargupta K, Sharma A (2002) Creation of ordered patterns by dewetting of thin films on homogeneous and heterogeneous substrates. J. Colloid Interface Sci. 245:99–115

    Article  Google Scholar 

  56. Kargupta K, Sharma A (2002) Dewetting of thin films on periodic physically and chemically patterned surfaces. Langmuir 18:1893–1903

    Article  Google Scholar 

  57. Mukherjee R, Sharma A, Gonuguntla M, Patil GK (2008) Adhesive force assisted imprinting of soft solid polymer films by flexible foils. J. Nanosci. Nanotechnol. 8:3406–3415

    Article  Google Scholar 

  58. Mukherjee R, Pangule RC, Sharma A, Banerjee I (2007) Contact instability of thin elastic films on patterned substrates. J. Chem. Phys. 127:064703 (6 pages)

    Article  Google Scholar 

  59. Reynolds O (1886) On the theory and of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177:157–234

    Article  Google Scholar 

  60. Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81:1139–1198

    Article  Google Scholar 

  61. Yerushalmi-Rozen R, Klein J, Fetters L (1994) Suppression of rupture in thin, nonwetting liquid films. Science 263:793–795

    Article  Google Scholar 

  62. Henn G, Bucknall DG, Stamm M, Vanhoorne P, Jerome R (1996) Chain end effects and dewetting in thin polymer films. Macromolecules 29:4305–4313

    Article  Google Scholar 

  63. Feng Y, Karim A, Weiss RA, Douglas JF, Han CC (1998) Control of polystyrene film dewetting through sulfonation and metal complexation. Macromolecules 31:484–493

    Article  Google Scholar 

  64. Li X, Han Y, An L (2003) Inhibition of thin polystyrene film dewetting via phase separation. Polymer 44:5833–5841

    Article  Google Scholar 

  65. Kropka JM, Green PF (2006) Control of interfacial instabilities in thin polymer films with the addition of a miscible component. Macromolecules 39:8758–8762

    Article  Google Scholar 

  66. Carroll GT, Sojka ME, Lei X, Turro NJ, Koberstein JT (2006) Photoactive additives for cross-linking polymer films: Inhibition of dewetting in thin polymer films. Langmuir 22:7748–7754

    Article  Google Scholar 

  67. Barnes KA, Karim A, Douglas JF, Nakatani AI, Gruell H, Amis EJ (2000) Suppression of dewetting in nanoparticle-filled polymer films. Macromolecules 33:4177–4185

    Article  Google Scholar 

  68. Mackay ME, Hong Y, Jeong M, Hong S, Russell TP, Hawker CJ, Vestberg R, Douglas JF (2002) Influence of dendrimer additives on the dewetting of thin polystyrene films. Langmuir 18:1877–1882

    Article  Google Scholar 

  69. Hosaka N, Tanaka K, Otsuka H, Otsuka H, Takahara A (2004) Influence of the addition of silsesquioxane on the dewetting behavior of polystyrene thin film. Compos. Interfaces 11:297–306

    Article  Google Scholar 

  70. Kropka, JM, Garcia Sakai V, Green PF (2008) Local polymer dynamics in polymer-C60 mixtures. Nano Lett. 8:1061–1065

    Article  Google Scholar 

  71. Sharma S, Rafailovich MH, Peiffer D, Sokolov J (2001) Control of dewetting dynamics by adding nanoparticle fillers. Nano Lett. 1:511–514

    Article  Google Scholar 

  72. Xavier JH, Sharma S, Seo YS, Isseroff R, Koga T, White H, Ulman A, Shin K, Satija SK, Sokolov J, Rafailovich MH (2006) Effect of nanoscopic fillers on dewetting dynamics. Macromolecules 39:2972–2980

    Article  Google Scholar 

  73. Luo H, Gersappe D (2004) Dewetting dynamics of nanofilled polymer thin films. Macromolecules 37:5792–5799

    Article  Google Scholar 

  74. Hosaka N, Tanaka K, Otsuka H, Otsuka H, Takahara A (2007) Structure and dewetting behavior of polyhedral oligomeric silsesquioxane-filled polystyrene thin films. Langmuir 23:902–907

    Article  Google Scholar 

  75. Mukherjee R, Das S, Das A, Sharma SK, Raychaudhuri AK, Sharma A (2010) Stability and dewetting of metal nanoparticle filled thin polymer films: Control of instability length scale and dynamics. ACS Nano 4:3709–3724

    Article  Google Scholar 

  76. de Gennes PG (1985) Wetting: Statics and dynamics. Rev. Mod. Phys. 57:827–863

    Article  Google Scholar 

  77. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28:988–994

    Article  Google Scholar 

  78. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans. Faraday Soc. 40:546–551

    Article  Google Scholar 

  79. Nosonovsky M, Bhushan B (2008) Biologically inspired surfaces: Broadening the scope of roughness. Adv. Funct. Mater. 18:843–855

    Article  Google Scholar 

  80. Marmur A (1994) Thermodynamic aspects of contact angle hysteresis. Adv. Colloid Interface Sci. 50:121–141

    Article  Google Scholar 

  81. Krausch G (1995) Surface induced self assembly in thin polymer films. Mater. Sci. Eng. R14:1–95

    Google Scholar 

  82. Blossey R (2001) Dimple-assisted dewetting: Heterogeneous nucleation in undercooled wetting films. Ann. Phys. (Leipzig) 10:733–775

    Article  MATH  Google Scholar 

  83. Muller-Buschbaum P (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J. Phys.: Condens. Matter 15: R1549–R1582

    Article  Google Scholar 

  84. Bucknall DG (2004) Influence of interfaces on thin polymer film behaviour. Prog. Mater. Sci. 49:713–786

    Article  Google Scholar 

  85. Baumchen O, Jacobs K (2010) Slip effects in polymer thin films. J. Phys.: Condens. Matter 22:033102 (21 pages)

    Article  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Ashutosh Sharma, Department of Chemical Engineering, IIT, Kanpur, for valuable discussion and useful advices. Funding from a DST Nano Mission project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabibrata Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mukherjee, R. (2011). Liquid Thin Film Hydrodynamics: Dewetting and Pattern Formation. In: Chakraborty, S. (eds) Mechanics Over Micro and Nano Scales. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9601-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9601-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9600-8

  • Online ISBN: 978-1-4419-9601-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics