Skip to main content

Domain Engineering and Phase Transformations

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Since high piezoelectricity was found in Pb(ZrxTi1−x )O3 or PZT [1], PZT ceramics have become the most successful piezoelectric materials in practical applications over the past 50 years. Currently, PZT materials are widely used in commercial applications such as actuators, transducers, and sensors. This technical dominance results from high longitudinal electromechanical coupling (k33) and piezoelectric d33 coefficients, in addition to a composition that is adjustable over a wide range of B-site stoichiometry and substituents. Such adaptability of composition offers capability in property control for a broad range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New York

    Google Scholar 

  2. Berlincourt D (1971) Ultrasonic transducer materials: piezoelectric crystals and ceramics. Springer, London

    Google Scholar 

  3. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Google Scholar 

  4. Kuwata J, Uchino K, Nomura S (1981) Phase-transitions in the Pb(Zn1/3nb2/3)O3-PbTiO3 system. Ferroelectrics 37:579–582

    Google Scholar 

  5. Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3nb2/3)O3-0.09PbTiO3 single-crystals. Jpn J Appl Phys Pt 1 21:1298–1302

    Google Scholar 

  6. Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989) Morphotropic phase-boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater Lett 8:253–255

    Google Scholar 

  7. Singh AK, Pandey D (2001) Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. J Phys Condens Matter 13:L931–L936

    Google Scholar 

  8. Noheda B, Cox DE, Shirane G, Gao J, Ye ZG (2002) Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B 66:054104

    Google Scholar 

  9. Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. J Appl Phys 87:2312–2319

    Google Scholar 

  10. Guo YP, Luo HS, Ling D, Xu HQ, He TH, Yin ZW (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys Condens Matter 15:L77–L82

    Google Scholar 

  11. Service RF (1997) Materials science: shape-changing crystals get shiftier. Science 275:1876–1878

    Google Scholar 

  12. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676

    Google Scholar 

  13. Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl Phys Lett 74:2059–2061

    Google Scholar 

  14. Noheda B, Gonzalo JA, Cross LE, Guo R, Park SE, Cox DE, Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61:8687–8695

    Google Scholar 

  15. Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2001) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63:014103

    Google Scholar 

  16. Vanderbilt D, Cohen M (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108

    Google Scholar 

  17. Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys Rev Lett 84:5427–5430

    Google Scholar 

  18. Noheda B, Cox DE, Shirane G, Park SE, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys Rev Lett 86:3891–3894

    Google Scholar 

  19. Noheda B, Zhong Z, Cox DE, Shirane G, Park SE, Rehrig P (2002) Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)(1-x)TixO3. Phys Rev B 65:224101

    Google Scholar 

  20. La-Orauttapong D, Noheda B, Ye ZG, Gehring PM, Toulouse J, Cox DE, Shirane G (2002) Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3. Phys Rev B 65:144101

    Google Scholar 

  21. Ohwada K, Hirota K, Rehrig PW, Fujii Y, Shirane G (2003) Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3. Phys Rev B 67:094111

    Google Scholar 

  22. Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid St M 6:27–34

    Google Scholar 

  23. Yao JJ, Cao H, Ge WW, Li JF, Viehland D (2009) Monoclinic M-B phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. Appl Phys Lett 95:052905

    Google Scholar 

  24. Ye ZG, Noheda B, Dong M, Cox D, Shirane G (2001) Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Phys Rev B 64:184114

    Google Scholar 

  25. Xu G, Luo H, Xu H, Yin Z (2001) Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys Rev B 64:020102

    Google Scholar 

  26. Lu Y, Jeong DY, Cheng ZY, Zhang QM, Luo HS, Yin ZW, Viehland D (2001) Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl Phys Lett 78:3109–3111

    Google Scholar 

  27. Kiat J-M, Uesu Y, Dkhil B, Matsuda M, Malibert C, Calvarin G (2002) Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds. Phys Rev B 65:064106

    Google Scholar 

  28. Singh A, Pandey D (2003) Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: a Rietveld study. Phys Rev B 67:064102

    Google Scholar 

  29. Bai FM, Wang NG, Li JF, Viehland D, Gehring PM, Xu GY, Shirane G (2004) X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J Appl Phys 96:1620–1627

    Google Scholar 

  30. Cao H, Bai FM, Li JF, Viehland D, Xu GY, Hiraka H, Shirane G (2005) Structural phase transformation and phase boundary/stability studies of field-cooled Pb(Mg1/3Nb2/3O3)-32%PbTiO3 crystals. J Appl Phys 97:094101

    Google Scholar 

  31. Cao H, Bai FM, Wang NG, Li JF, Viehland D, Xu GY, Shirane G (2005) Intermediate ferroelectric orthorhombic and monoclinic M-B phases in [110] electric-field-cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals. Phys Rev B 72:064104

    Google Scholar 

  32. Cao H, Li JF, Viehland D, Xu GY, Shirane G (2006) Monoclinic MC vs orthorhombic in [001] and [110] electric-field-cooled Pb(Mg1/3Nb2/3O3)-35%PbTiO3 crystals. Appl Phys Lett 88:072915

    Google Scholar 

  33. Cao H, Li JF, Viehland D (2006) Electric-field-induced orthorhombic to monoclinic MB phase transition in [111] electric field cooled Pb(Mg1/3Nb2/3O3)-30%PbTiO3 crystals. J Appl Phys 100:084102

    Google Scholar 

  34. Cao H, Li JF, Viehland D (2006) Structural origin of the relaxor-to-normal ferroelectric transition in Pb(Mg1/3Nb2/3O3)-xPbTiO3. J Appl Phys 100:034110

    Google Scholar 

  35. Cao H, Li JF, Viehland D, Xu GY (2006) Fragile phase stability in (1-x)Pb(Mg1/3Nb2/3O3)-xPbTiO3 crystals: a comparison of [001] and [110] field-cooled phase diagrams. Phys Rev B 73:184110

    Google Scholar 

  36. Cao H, Stock C, Xu GY, Gehring PM, Li JF, Viehland D (2008) Dynamic origin of the morphotropic phase boundary: soft modes and phase instability in 0.68Pb(Mg1/3Nb2/3O3)-0.32PbTiO3. Phys Rev B 78:104103

    Google Scholar 

  37. Bai FM (2006) Materials science and engineering. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  38. Cao H (2008) Materials science and engineering. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  39. Fu HX, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283

    Google Scholar 

  40. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys Pt 1 38:5505–5511

    Google Scholar 

  41. Viehland D (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J Appl Phys 88:4794–4806

    Google Scholar 

  42. Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys Rev Lett 91:197601

    Google Scholar 

  43. Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J Appl Phys 94:3629–3640

    Google Scholar 

  44. Wechsler MS (1974) On theory of formation of martensite. JOM 5(1953):1503–1515

    Google Scholar 

  45. Syutkina VI, Yakovleva ES (1967) The mechanism of deformation of the ordered CuAu alloy. Physica Status Solidi B 21:465–480

    Google Scholar 

  46. Wang YU (2006) Diffraction theory of nanotwin superlattices with low symmetry phase. Phys Rev B Condens Matter 74:104109–104101

    Google Scholar 

  47. Wang YU (2006) Three intrinsic relationships of lattice parameters between intermediate monoclinic Mc and tetragonal phases in ferroelectric Pb[(Mg1/3Nb2/3)1-xTiO3 and Pb[(Zn1/3Nb2/3)1-xTix]O3 near morphotropic phase boundaries. Phys Rev B Condens Matter 73:14113–14111

    Google Scholar 

  48. European Union (2003) Directive 2002/95/Ec of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (ROHS). Official J Eur Union L37:19–23

    Google Scholar 

  49. European Union (2003) Directive 2002/96/Ec of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official J Eur Union L37:24–38

    Google Scholar 

  50. Von Hippel A (1946) High dielectric constant ceramics. Ind Eng Chem 38:1097–1109

    Google Scholar 

  51. Roberts S (1947) Dielectric and piezoelectric properties of barium titanate. Phys Rev 71:890

    Google Scholar 

  52. Buhrer CF (1962) Some properties of bismuth perovskites. J Chem Phys 36:798–803

    Google Scholar 

  53. Smolenskii G, Isupov V, Agranovskaya A, Krainik N (1960) New ferroelectrics of complex composition. Sov Phys Solid State 2:2651–2654

    Google Scholar 

  54. Suchanicz J, Roleder K, Kania A, Hanaderek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 77:107–110

    Google Scholar 

  55. Sakata K, Masuda Y (1974) Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7:347–349

    Google Scholar 

  56. Nagata H, Takenaka T (1997) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3 center dot Sc2O3) system. Jpn J Appl Phys Pt 1 36:6055–6057

    Google Scholar 

  57. Nagata H, Takenaka T (1998) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3-Sc2O3) system. Jpn J Appl Phys Pt 1 37:5311–5314

    Google Scholar 

  58. Takenaka T, Maruyama K, Sakata K (1991) Na0.5Bi0.5TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239

    Google Scholar 

  59. Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys Pt 1 38:5564–5567

    Google Scholar 

  60. Matthias BT, Remeika JP (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82:727–729

    Google Scholar 

  61. Nakamura K, Kawamura Y (2000) Orientation dependence of electromechanical coupling factors in KNbO3. Ieee T Ultrason Ferr 47:750–755

    Google Scholar 

  62. Wada S, Seike A, Tsurumi T (2001) Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys Pt 1 40:5690–5697

    Google Scholar 

  63. Ishii H (2001) Morphotropic phase boundary and electrical properties of bismuth sodium titanate-potassium niobate solid-solution ceramics. Jpn J Appl Phys 40:5660–5663

    Google Scholar 

  64. Matsuo K, Xie R-J, Akimune Y, Sugiyama T (2002) Lead-free Sr2.xCaxNaNb5O15(x=0.1) based PTZ with tungsten bronze. J Ceram Soc Jpn 110:491–494

    Google Scholar 

  65. Simon A (2003) Lead-free relaxors with “TTB” structure containing either lanthanum or bismuth. Physica Status Solidi A Appl Res 199:541–545

    Google Scholar 

  66. Vondermuhll R, Simon A, Elissalde C, Villesuzanne A (2004) Dielectric investigation of a new TKWB lead free relaxor. J Phys Chem Solids 65:1039–1043

    Google Scholar 

  67. Patro P (2004) Dielectric and ferroelectric behavior of SBN50 synthesized by solid-state route using different precursors. Ceram Int 30:1405–1409

    Google Scholar 

  68. Jiang WJ, Cao WW, Yi XJ, Chen HC (2005) The elastic and piezoelectric properties of tungsten bronze ferroelectric crystals (Sr0.7Ba0.3)(2)NaNb5O15 and (Sr0.3Ba0.7)(2)NaNb5O15. J Appl Phys 97:094106

    Google Scholar 

  69. Subbarao EC (1962) Crystal chemistry of mixed bismuth oxides with layer-type structure. Am Ceram Soc J 45:166–169

    Google Scholar 

  70. Armstrong RA (1972) Bismuth titanate solid solutions. Mater Res Bull 7:1025–1034

    Google Scholar 

  71. Cross LE (1971) Ferroelectricity in bismuth oxide type layer structure compounds. Mater Res Bull 6:939–949

    Google Scholar 

  72. Ikegami S (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13:1572–1577

    Google Scholar 

  73. Takeuchi T (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556

    Google Scholar 

  74. Dorrian JF (1971) Crystal structure of Bi4Ti3O12. Ferroelectrics 3:17–27

    Google Scholar 

  75. Cummins SE (1968) Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J Appl Phys 39:2268

    Google Scholar 

  76. Villegas M (1999) Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics. J Am Ceram Soc 82:2411–2416

    Google Scholar 

  77. Noguchi Y (2001) Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl Phys Lett 78:1903

    Google Scholar 

  78. Nanao M, Hirose M, Tsukada T (2001) Piezoelectric properties of Bi3TiNbO9-BaBi2Nb2O9 ceramics. Jpn J Appl Phys Pt 1 40:5727–5730

    Google Scholar 

  79. Shibata K (2001) Sr1-xCaxBi2Ta2O9 piezoelectric ceramics with high mechanical quality factor. Jpn J Appl Phys 40:5719–5721

    Google Scholar 

  80. Chiang YM, Farrey GW, Soukhojak AN (1998) Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl Phys Lett 73:3683–3685

    Google Scholar 

  81. Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rodel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Google Scholar 

  82. Teranishi S, Suzuki M, Noguchi Y, Miyayama M, Moriyoshi C, Kuroiwa Y, Tawa K, Mori S (2008) Giant strain in lead-free (Bi0.5Na0.5)TiO3-based single crystals. Appl Phys Lett 92:182905

    Google Scholar 

  83. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl Phys Lett 92:262904

    Google Scholar 

  84. Zhang QH, Zhang YY, Wang FF, Wang YJ, Lin D, Zhao XY, Luo HS, Ge WW, Viehland D (2009) Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3-BaTiO3 single crystals. Appl Phys Lett 95:102904

    Google Scholar 

  85. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Google Scholar 

  86. Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338:1433–1448

    Google Scholar 

  87. Guo YP, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121–4123

    Google Scholar 

  88. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 87:182905

    Google Scholar 

  89. Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics. J Appl Phys 97:114105

    Google Scholar 

  90. Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Google Scholar 

  91. Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750

    Google Scholar 

  92. Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 98:014109

    Google Scholar 

  93. Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T (2007) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46:7039–7043

    Google Scholar 

  94. Takahashi H, Numamoto Y, Tani J, Tsurekawa S (2007) Domain properties of high-performance barium titanate ceramics. Jpn J Appl Phys 46:7044–7047

    Google Scholar 

  95. Karaki T, Yan K, Miyamoto T, Adachi M (2007) Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys 2(46):L97–L98

    Google Scholar 

  96. Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602

    Google Scholar 

  97. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700

    Google Scholar 

  98. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124

    Google Scholar 

  99. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Google Scholar 

  100. Pronin IP, Syrnikov PP, Isupov VA, Egorov VM, Zaitseva NV (1980) Peculiarities of phase transitions in sodium-bismuth titanate. Ferroelectrics 25:395–397

    Google Scholar 

  101. Vakhrushev SB, Isupov VA, Kvyatkovsky BE, Okuneva NM, Pronin IP, Smolensky GA, Syrnikov PP (1985) Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics 63:153–160

    Google Scholar 

  102. Avramenko VP (1995) Peculiarities of electrophysical properties of Na0.5Bi0.5TiO3 single crystals. Ferroelectrics 174:71–75

    Google Scholar 

  103. Tu CS, Siny IG, Schmidt VH (1994) Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bii1/2TiO3. Phys Rev B 49:11550–11559

    Google Scholar 

  104. Suchanicz J, Roleder K, Kwapulinski J, Jankowska-Sumara I (1996) Dielectric and structural relaxation phenomena in Na0.5Bi0.5TiO3 single crystal. Phase Transitions 57:173–182

    Google Scholar 

  105. Zvirgzds JA, Kapostins PP, Zvirgzde JV, Kruzina TV (1982) X-ray study of phase-transitions in ferroelectric Na0.5Bi0.5TiO3. Ferroelectrics 40:75–77

    Google Scholar 

  106. Suchanicz J, Kwapulinski J (1995) X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics 165:249–253

    Google Scholar 

  107. Kusz J, Suchanicz J, Bohm H, Warczewski J (1999) High temperature x-ray single crystal study of Na1/2Bi1/2TiO3. Phase Transitions 70:223–229

    Google Scholar 

  108. Suchanicz J (1997) Time evolution of the phase transformation in Na0.5Bi0.5TiO3. Ferroelectrics 200:319–325

    Google Scholar 

  109. Jones GO, Thomas PA (2000) The tetragonal phase of Na0.5Bi0.5TiO3 – a new variant of the perovskite structure. Acta Crystallogr B 56:426–430

    Google Scholar 

  110. Yao JJ, Ge WW, Luo L, Li JF, Viehland D, Luo HS (2010) Hierarchical domains in Na1/2Bi1/2TiO3 single crystals: Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance. Appl Phys Lett 96:222905

    Google Scholar 

  111. Ge WW, Li JF, Viehland D, Luo HS (2010) Influence of Mn doping on the structure and properties of Na0.5Bi0.5TiO3 single crystals. J Am Ceram Soc 93:1372–1377

    Google Scholar 

  112. Kruzina TV, Duda VM, Suchanicz J (2001) Peculiarities of optical behaviour of Na0.5Bi0.5TiO3 single crystals. Mat Sci Eng B Solid 87:48–52

    Google Scholar 

  113. Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647

    Google Scholar 

  114. Syutkina VI (1967) The mechanism of deformation of the ordered CuAu alloy. Physica Status Solidi 21:465–480

    Google Scholar 

  115. Raymond MV (1996) Defects and charge transport in perovskite ferroelectrics. J Phys Chem Solids 57:1507–1511

    Google Scholar 

  116. Smyth DM (1994) Ionic transport in ferroelectrics. Ferroelectrics 151:115–124

    Google Scholar 

  117. Nagata H, Takenaka T (2001) Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J Eur Ceram Soc 21:1299–1302

    Google Scholar 

  118. Park SE, Chung SJ, Kim IT (1996) Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals. J Am Ceram Soc 79:1290–1296

    Google Scholar 

  119. Ge W, Yao J, Luo L, Devreugd CP, Li J, Viehland D, Zhang Q, Luo H (2011) Nucleation of rhombohedral regions within a tetragonal matrix in Mn-doped Na0.5Bi0.5TiO3 crystals: origins of a diffuse transformation, thermal hysteresis, and isotropization. J Am Ceram Soc 94:478–481

    Google Scholar 

  120. Ge WW, Cao H, Li JF, Viehland D, Zhang QH, Luo HS (2009) Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6 at. %BaTiO3 single crystals. Appl Phys Lett 95:162903

    Google Scholar 

  121. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916–2921

    Google Scholar 

  122. Dai XH, Xu Z, Viehland D (1994) The spontaneous relaxor to normal ferroelectric transformation in La-modified lead-zirconate-titanate. Philos Mag B 70:33–48

    Google Scholar 

  123. Park SE, Chung SJ, Kim IT, Hong KS (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2)TiO3. J Am Ceram Soc 77:2641–2647

    Google Scholar 

  124. Ren XB, Otsuka K (1997) Origin of rubber-like behaviour in metal alloys. Nature 389:579–582

    Google Scholar 

  125. Ren XB, Otsuka K (2000) Universal symmetry property of point defects in crystals. Phys Rev Lett 85:1016–1019

    Google Scholar 

  126. Ren X (2002) The interaction of point defects with the martensitic transformation: a prototype of exotic multiscale phenomena. Mrs Bull 27:115–120

    Google Scholar 

  127. Ren XB (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91–94

    Google Scholar 

  128. Zhang LX, Ren XB (2006) Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys Rev B 73:094121

    Google Scholar 

  129. Zhang LX, Chen W, Ren X (2004) Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics. Appl Phys Lett 85:5658

    Google Scholar 

  130. Ge W, Cao H, Devreugd CP, Li J, Viehland D, Zhang Q, Luo H (2011) Influence of BaTio3 Content on the Structure and Properties of Nao.5Bio.5Tio3 Crystals. J Am Ceram Soc. doi: 10.1111/j.1551-2916.2011.04433.x

  131. Jona F, Shirane G (1962) Ferroelectric crystals. Pergamon press, Oxford

    Google Scholar 

  132. Cao H, Devreugd CP, Ge WW, Li JF, Viehland D, Luo HS, Zhao XY (2009) Monoclinic MC phase in (001) field cooled BaTiO3 single crystals. Appl Phys Lett 94:032901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwei Ge or D. Viehland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ge, W., Li, J., Viehland, D. (2012). Domain Engineering and Phase Transformations. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics