Advertisement

Domain Engineering and Phase Transformations

Chapter

Abstract

Since high piezoelectricity was found in Pb(ZrxTi1−x )O3 or PZT [1], PZT ceramics have become the most successful piezoelectric materials in practical applications over the past 50 years. Currently, PZT materials are widely used in commercial applications such as actuators, transducers, and sensors. This technical dominance results from high longitudinal electromechanical coupling (k33) and piezoelectric d33 coefficients, in addition to a composition that is adjustable over a wide range of B-site stoichiometry and substituents. Such adaptability of composition offers capability in property control for a broad range of applications.

Keywords

Piezoelectric Property Monoclinic Phase Field Cool Polarization Rotation Scan Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New YorkGoogle Scholar
  2. 2.
    Berlincourt D (1971) Ultrasonic transducer materials: piezoelectric crystals and ceramics. Springer, LondonGoogle Scholar
  3. 3.
    Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811Google Scholar
  4. 4.
    Kuwata J, Uchino K, Nomura S (1981) Phase-transitions in the Pb(Zn1/3nb2/3)O3-PbTiO3 system. Ferroelectrics 37:579–582Google Scholar
  5. 5.
    Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3nb2/3)O3-0.09PbTiO3 single-crystals. Jpn J Appl Phys Pt 1 21:1298–1302Google Scholar
  6. 6.
    Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989) Morphotropic phase-boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater Lett 8:253–255Google Scholar
  7. 7.
    Singh AK, Pandey D (2001) Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. J Phys Condens Matter 13:L931–L936Google Scholar
  8. 8.
    Noheda B, Cox DE, Shirane G, Gao J, Ye ZG (2002) Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B 66:054104Google Scholar
  9. 9.
    Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. J Appl Phys 87:2312–2319Google Scholar
  10. 10.
    Guo YP, Luo HS, Ling D, Xu HQ, He TH, Yin ZW (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys Condens Matter 15:L77–L82Google Scholar
  11. 11.
    Service RF (1997) Materials science: shape-changing crystals get shiftier. Science 275:1876–1878Google Scholar
  12. 12.
    Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676Google Scholar
  13. 13.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl Phys Lett 74:2059–2061Google Scholar
  14. 14.
    Noheda B, Gonzalo JA, Cross LE, Guo R, Park SE, Cox DE, Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61:8687–8695Google Scholar
  15. 15.
    Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2001) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63:014103Google Scholar
  16. 16.
    Vanderbilt D, Cohen M (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phys Rev B 63:094108Google Scholar
  17. 17.
    Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys Rev Lett 84:5427–5430Google Scholar
  18. 18.
    Noheda B, Cox DE, Shirane G, Park SE, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys Rev Lett 86:3891–3894Google Scholar
  19. 19.
    Noheda B, Zhong Z, Cox DE, Shirane G, Park SE, Rehrig P (2002) Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)(1-x)TixO3. Phys Rev B 65:224101Google Scholar
  20. 20.
    La-Orauttapong D, Noheda B, Ye ZG, Gehring PM, Toulouse J, Cox DE, Shirane G (2002) Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3. Phys Rev B 65:144101Google Scholar
  21. 21.
    Ohwada K, Hirota K, Rehrig PW, Fujii Y, Shirane G (2003) Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3. Phys Rev B 67:094111Google Scholar
  22. 22.
    Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid St M 6:27–34Google Scholar
  23. 23.
    Yao JJ, Cao H, Ge WW, Li JF, Viehland D (2009) Monoclinic M-B phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. Appl Phys Lett 95:052905Google Scholar
  24. 24.
    Ye ZG, Noheda B, Dong M, Cox D, Shirane G (2001) Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Phys Rev B 64:184114Google Scholar
  25. 25.
    Xu G, Luo H, Xu H, Yin Z (2001) Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys Rev B 64:020102Google Scholar
  26. 26.
    Lu Y, Jeong DY, Cheng ZY, Zhang QM, Luo HS, Yin ZW, Viehland D (2001) Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl Phys Lett 78:3109–3111Google Scholar
  27. 27.
    Kiat J-M, Uesu Y, Dkhil B, Matsuda M, Malibert C, Calvarin G (2002) Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds. Phys Rev B 65:064106Google Scholar
  28. 28.
    Singh A, Pandey D (2003) Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: a Rietveld study. Phys Rev B 67:064102Google Scholar
  29. 29.
    Bai FM, Wang NG, Li JF, Viehland D, Gehring PM, Xu GY, Shirane G (2004) X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J Appl Phys 96:1620–1627Google Scholar
  30. 30.
    Cao H, Bai FM, Li JF, Viehland D, Xu GY, Hiraka H, Shirane G (2005) Structural phase transformation and phase boundary/stability studies of field-cooled Pb(Mg1/3Nb2/3O3)-32%PbTiO3 crystals. J Appl Phys 97:094101Google Scholar
  31. 31.
    Cao H, Bai FM, Wang NG, Li JF, Viehland D, Xu GY, Shirane G (2005) Intermediate ferroelectric orthorhombic and monoclinic M-B phases in [110] electric-field-cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals. Phys Rev B 72:064104Google Scholar
  32. 32.
    Cao H, Li JF, Viehland D, Xu GY, Shirane G (2006) Monoclinic MC vs orthorhombic in [001] and [110] electric-field-cooled Pb(Mg1/3Nb2/3O3)-35%PbTiO3 crystals. Appl Phys Lett 88:072915Google Scholar
  33. 33.
    Cao H, Li JF, Viehland D (2006) Electric-field-induced orthorhombic to monoclinic MB phase transition in [111] electric field cooled Pb(Mg1/3Nb2/3O3)-30%PbTiO3 crystals. J Appl Phys 100:084102Google Scholar
  34. 34.
    Cao H, Li JF, Viehland D (2006) Structural origin of the relaxor-to-normal ferroelectric transition in Pb(Mg1/3Nb2/3O3)-xPbTiO3. J Appl Phys 100:034110Google Scholar
  35. 35.
    Cao H, Li JF, Viehland D, Xu GY (2006) Fragile phase stability in (1-x)Pb(Mg1/3Nb2/3O3)-xPbTiO3 crystals: a comparison of [001] and [110] field-cooled phase diagrams. Phys Rev B 73:184110Google Scholar
  36. 36.
    Cao H, Stock C, Xu GY, Gehring PM, Li JF, Viehland D (2008) Dynamic origin of the morphotropic phase boundary: soft modes and phase instability in 0.68Pb(Mg1/3Nb2/3O3)-0.32PbTiO3. Phys Rev B 78:104103Google Scholar
  37. 37.
    Bai FM (2006) Materials science and engineering. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  38. 38.
    Cao H (2008) Materials science and engineering. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  39. 39.
    Fu HX, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283Google Scholar
  40. 40.
    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys Pt 1 38:5505–5511Google Scholar
  41. 41.
    Viehland D (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J Appl Phys 88:4794–4806Google Scholar
  42. 42.
    Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys Rev Lett 91:197601Google Scholar
  43. 43.
    Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J Appl Phys 94:3629–3640Google Scholar
  44. 44.
    Wechsler MS (1974) On theory of formation of martensite. JOM 5(1953):1503–1515Google Scholar
  45. 45.
    Syutkina VI, Yakovleva ES (1967) The mechanism of deformation of the ordered CuAu alloy. Physica Status Solidi B 21:465–480Google Scholar
  46. 46.
    Wang YU (2006) Diffraction theory of nanotwin superlattices with low symmetry phase. Phys Rev B Condens Matter 74:104109–104101Google Scholar
  47. 47.
    Wang YU (2006) Three intrinsic relationships of lattice parameters between intermediate monoclinic Mc and tetragonal phases in ferroelectric Pb[(Mg1/3Nb2/3)1-xTiO3 and Pb[(Zn1/3Nb2/3)1-xTix]O3 near morphotropic phase boundaries. Phys Rev B Condens Matter 73:14113–14111Google Scholar
  48. 48.
    European Union (2003) Directive 2002/95/Ec of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (ROHS). Official J Eur Union L37:19–23Google Scholar
  49. 49.
    European Union (2003) Directive 2002/96/Ec of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official J Eur Union L37:24–38Google Scholar
  50. 50.
    Von Hippel A (1946) High dielectric constant ceramics. Ind Eng Chem 38:1097–1109Google Scholar
  51. 51.
    Roberts S (1947) Dielectric and piezoelectric properties of barium titanate. Phys Rev 71:890Google Scholar
  52. 52.
    Buhrer CF (1962) Some properties of bismuth perovskites. J Chem Phys 36:798–803Google Scholar
  53. 53.
    Smolenskii G, Isupov V, Agranovskaya A, Krainik N (1960) New ferroelectrics of complex composition. Sov Phys Solid State 2:2651–2654Google Scholar
  54. 54.
    Suchanicz J, Roleder K, Kania A, Hanaderek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 77:107–110Google Scholar
  55. 55.
    Sakata K, Masuda Y (1974) Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7:347–349Google Scholar
  56. 56.
    Nagata H, Takenaka T (1997) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3 center dot Sc2O3) system. Jpn J Appl Phys Pt 1 36:6055–6057Google Scholar
  57. 57.
    Nagata H, Takenaka T (1998) Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3-Sc2O3) system. Jpn J Appl Phys Pt 1 37:5311–5314Google Scholar
  58. 58.
    Takenaka T, Maruyama K, Sakata K (1991) Na0.5Bi0.5TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239Google Scholar
  59. 59.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys Pt 1 38:5564–5567Google Scholar
  60. 60.
    Matthias BT, Remeika JP (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82:727–729Google Scholar
  61. 61.
    Nakamura K, Kawamura Y (2000) Orientation dependence of electromechanical coupling factors in KNbO3. Ieee T Ultrason Ferr 47:750–755Google Scholar
  62. 62.
    Wada S, Seike A, Tsurumi T (2001) Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys Pt 1 40:5690–5697Google Scholar
  63. 63.
    Ishii H (2001) Morphotropic phase boundary and electrical properties of bismuth sodium titanate-potassium niobate solid-solution ceramics. Jpn J Appl Phys 40:5660–5663Google Scholar
  64. 64.
    Matsuo K, Xie R-J, Akimune Y, Sugiyama T (2002) Lead-free Sr2.xCaxNaNb5O15(x=0.1) based PTZ with tungsten bronze. J Ceram Soc Jpn 110:491–494Google Scholar
  65. 65.
    Simon A (2003) Lead-free relaxors with “TTB” structure containing either lanthanum or bismuth. Physica Status Solidi A Appl Res 199:541–545Google Scholar
  66. 66.
    Vondermuhll R, Simon A, Elissalde C, Villesuzanne A (2004) Dielectric investigation of a new TKWB lead free relaxor. J Phys Chem Solids 65:1039–1043Google Scholar
  67. 67.
    Patro P (2004) Dielectric and ferroelectric behavior of SBN50 synthesized by solid-state route using different precursors. Ceram Int 30:1405–1409Google Scholar
  68. 68.
    Jiang WJ, Cao WW, Yi XJ, Chen HC (2005) The elastic and piezoelectric properties of tungsten bronze ferroelectric crystals (Sr0.7Ba0.3)(2)NaNb5O15 and (Sr0.3Ba0.7)(2)NaNb5O15. J Appl Phys 97:094106Google Scholar
  69. 69.
    Subbarao EC (1962) Crystal chemistry of mixed bismuth oxides with layer-type structure. Am Ceram Soc J 45:166–169Google Scholar
  70. 70.
    Armstrong RA (1972) Bismuth titanate solid solutions. Mater Res Bull 7:1025–1034Google Scholar
  71. 71.
    Cross LE (1971) Ferroelectricity in bismuth oxide type layer structure compounds. Mater Res Bull 6:939–949Google Scholar
  72. 72.
    Ikegami S (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13:1572–1577Google Scholar
  73. 73.
    Takeuchi T (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556Google Scholar
  74. 74.
    Dorrian JF (1971) Crystal structure of Bi4Ti3O12. Ferroelectrics 3:17–27Google Scholar
  75. 75.
    Cummins SE (1968) Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J Appl Phys 39:2268Google Scholar
  76. 76.
    Villegas M (1999) Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics. J Am Ceram Soc 82:2411–2416Google Scholar
  77. 77.
    Noguchi Y (2001) Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl Phys Lett 78:1903Google Scholar
  78. 78.
    Nanao M, Hirose M, Tsukada T (2001) Piezoelectric properties of Bi3TiNbO9-BaBi2Nb2O9 ceramics. Jpn J Appl Phys Pt 1 40:5727–5730Google Scholar
  79. 79.
    Shibata K (2001) Sr1-xCaxBi2Ta2O9 piezoelectric ceramics with high mechanical quality factor. Jpn J Appl Phys 40:5719–5721Google Scholar
  80. 80.
    Chiang YM, Farrey GW, Soukhojak AN (1998) Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl Phys Lett 73:3683–3685Google Scholar
  81. 81.
    Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rodel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906Google Scholar
  82. 82.
    Teranishi S, Suzuki M, Noguchi Y, Miyayama M, Moriyoshi C, Kuroiwa Y, Tawa K, Mori S (2008) Giant strain in lead-free (Bi0.5Na0.5)TiO3-based single crystals. Appl Phys Lett 92:182905Google Scholar
  83. 83.
    Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl Phys Lett 92:262904Google Scholar
  84. 84.
    Zhang QH, Zhang YY, Wang FF, Wang YJ, Lin D, Zhao XY, Luo HS, Ge WW, Viehland D (2009) Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3-BaTiO3 single crystals. Appl Phys Lett 95:102904Google Scholar
  85. 85.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87Google Scholar
  86. 86.
    Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338:1433–1448Google Scholar
  87. 87.
    Guo YP, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121–4123Google Scholar
  88. 88.
    Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 87:182905Google Scholar
  89. 89.
    Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics. J Appl Phys 97:114105Google Scholar
  90. 90.
    Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108Google Scholar
  91. 91.
    Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750Google Scholar
  92. 92.
    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 98:014109Google Scholar
  93. 93.
    Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T (2007) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46:7039–7043Google Scholar
  94. 94.
    Takahashi H, Numamoto Y, Tani J, Tsurekawa S (2007) Domain properties of high-performance barium titanate ceramics. Jpn J Appl Phys 46:7044–7047Google Scholar
  95. 95.
    Karaki T, Yan K, Miyamoto T, Adachi M (2007) Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys 2(46):L97–L98Google Scholar
  96. 96.
    Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602Google Scholar
  97. 97.
    Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700Google Scholar
  98. 98.
    Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124Google Scholar
  99. 99.
    Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177Google Scholar
  100. 100.
    Pronin IP, Syrnikov PP, Isupov VA, Egorov VM, Zaitseva NV (1980) Peculiarities of phase transitions in sodium-bismuth titanate. Ferroelectrics 25:395–397Google Scholar
  101. 101.
    Vakhrushev SB, Isupov VA, Kvyatkovsky BE, Okuneva NM, Pronin IP, Smolensky GA, Syrnikov PP (1985) Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics 63:153–160Google Scholar
  102. 102.
    Avramenko VP (1995) Peculiarities of electrophysical properties of Na0.5Bi0.5TiO3 single crystals. Ferroelectrics 174:71–75Google Scholar
  103. 103.
    Tu CS, Siny IG, Schmidt VH (1994) Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bii1/2TiO3. Phys Rev B 49:11550–11559Google Scholar
  104. 104.
    Suchanicz J, Roleder K, Kwapulinski J, Jankowska-Sumara I (1996) Dielectric and structural relaxation phenomena in Na0.5Bi0.5TiO3 single crystal. Phase Transitions 57:173–182Google Scholar
  105. 105.
    Zvirgzds JA, Kapostins PP, Zvirgzde JV, Kruzina TV (1982) X-ray study of phase-transitions in ferroelectric Na0.5Bi0.5TiO3. Ferroelectrics 40:75–77Google Scholar
  106. 106.
    Suchanicz J, Kwapulinski J (1995) X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics 165:249–253Google Scholar
  107. 107.
    Kusz J, Suchanicz J, Bohm H, Warczewski J (1999) High temperature x-ray single crystal study of Na1/2Bi1/2TiO3. Phase Transitions 70:223–229Google Scholar
  108. 108.
    Suchanicz J (1997) Time evolution of the phase transformation in Na0.5Bi0.5TiO3. Ferroelectrics 200:319–325Google Scholar
  109. 109.
    Jones GO, Thomas PA (2000) The tetragonal phase of Na0.5Bi0.5TiO3 – a new variant of the perovskite structure. Acta Crystallogr B 56:426–430Google Scholar
  110. 110.
    Yao JJ, Ge WW, Luo L, Li JF, Viehland D, Luo HS (2010) Hierarchical domains in Na1/2Bi1/2TiO3 single crystals: Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance. Appl Phys Lett 96:222905Google Scholar
  111. 111.
    Ge WW, Li JF, Viehland D, Luo HS (2010) Influence of Mn doping on the structure and properties of Na0.5Bi0.5TiO3 single crystals. J Am Ceram Soc 93:1372–1377Google Scholar
  112. 112.
    Kruzina TV, Duda VM, Suchanicz J (2001) Peculiarities of optical behaviour of Na0.5Bi0.5TiO3 single crystals. Mat Sci Eng B Solid 87:48–52Google Scholar
  113. 113.
    Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647Google Scholar
  114. 114.
    Syutkina VI (1967) The mechanism of deformation of the ordered CuAu alloy. Physica Status Solidi 21:465–480Google Scholar
  115. 115.
    Raymond MV (1996) Defects and charge transport in perovskite ferroelectrics. J Phys Chem Solids 57:1507–1511Google Scholar
  116. 116.
    Smyth DM (1994) Ionic transport in ferroelectrics. Ferroelectrics 151:115–124Google Scholar
  117. 117.
    Nagata H, Takenaka T (2001) Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J Eur Ceram Soc 21:1299–1302Google Scholar
  118. 118.
    Park SE, Chung SJ, Kim IT (1996) Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals. J Am Ceram Soc 79:1290–1296Google Scholar
  119. 119.
    Ge W, Yao J, Luo L, Devreugd CP, Li J, Viehland D, Zhang Q, Luo H (2011) Nucleation of rhombohedral regions within a tetragonal matrix in Mn-doped Na0.5Bi0.5TiO3 crystals: origins of a diffuse transformation, thermal hysteresis, and isotropization. J Am Ceram Soc 94:478–481Google Scholar
  120. 120.
    Ge WW, Cao H, Li JF, Viehland D, Zhang QH, Luo HS (2009) Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6 at. %BaTiO3 single crystals. Appl Phys Lett 95:162903Google Scholar
  121. 121.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916–2921Google Scholar
  122. 122.
    Dai XH, Xu Z, Viehland D (1994) The spontaneous relaxor to normal ferroelectric transformation in La-modified lead-zirconate-titanate. Philos Mag B 70:33–48Google Scholar
  123. 123.
    Park SE, Chung SJ, Kim IT, Hong KS (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2)TiO3. J Am Ceram Soc 77:2641–2647Google Scholar
  124. 124.
    Ren XB, Otsuka K (1997) Origin of rubber-like behaviour in metal alloys. Nature 389:579–582Google Scholar
  125. 125.
    Ren XB, Otsuka K (2000) Universal symmetry property of point defects in crystals. Phys Rev Lett 85:1016–1019Google Scholar
  126. 126.
    Ren X (2002) The interaction of point defects with the martensitic transformation: a prototype of exotic multiscale phenomena. Mrs Bull 27:115–120Google Scholar
  127. 127.
    Ren XB (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91–94Google Scholar
  128. 128.
    Zhang LX, Ren XB (2006) Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys Rev B 73:094121Google Scholar
  129. 129.
    Zhang LX, Chen W, Ren X (2004) Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics. Appl Phys Lett 85:5658Google Scholar
  130. 130.
    Ge W, Cao H, Devreugd CP, Li J, Viehland D, Zhang Q, Luo H (2011) Influence of BaTio3 Content on the Structure and Properties of Nao.5Bio.5Tio3 Crystals. J Am Ceram Soc. doi:  10.1111/j.1551-2916.2011.04433.x
  131. 131.
    Jona F, Shirane G (1962) Ferroelectric crystals. Pergamon press, OxfordGoogle Scholar
  132. 132.
    Cao H, Devreugd CP, Ge WW, Li JF, Viehland D, Luo HS, Zhao XY (2009) Monoclinic MC phase in (001) field cooled BaTiO3 single crystals. Appl Phys Lett 94:032901Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations