Bethe Theory for High Incident Energies and Anisotropic Materials



Even for 100-keV incident electrons, it is necessary to use relativistic kinematics to calculate inelastic cross sections, as in Section 3.6.2. Above 200 keV, however, an additional effect starts to become important, representing the fact that the electrostatic interaction is “retarded” due to the finite speed of light. At high incident energies and for isotropic materials, Eq. (3.26) should be replaced by (Møller, 1932; Perez et al., 1977)


Boron Nitride Isotropic Material Incident Energy Anisotropic Material Inelastic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Egerton, R. F. (1987) EELS at intermediate voltage. In Intermediate Voltage Microscopy and Its Application to Materials Science, ed. K. Rajan, Philips Electron Optics, Mahwah, NJ, pp. 67–71.Google Scholar
  2. Fano, U. (1956) Differential inelastic scattering of relativistic charged particles. Phys. Rev. 102, 385–387.CrossRefGoogle Scholar
  3. Inokuti, M. (1971) Inelastic collisions of fast charged particles with atoms and molecules – The Bethe theory revisited. Rev. Mod. Phys. 43, 297–347. Addenda: Rev. Mod. Phys. 50, 23–26.CrossRefGoogle Scholar
  4. Jouffrey, B., Schattschneider, P., and Hébert, C. (2004) The magic angle: A solved mystery. Ultramicroscopy 102, 61–66.CrossRefGoogle Scholar
  5. Kurata, H., Wahlbring, P., Isoda, S., and Kobayashi, T. (1997) Importance of relativistic effect on inelastic scattering cross sections for quantitative microanalsyis. Micron 28, 381–388.CrossRefGoogle Scholar
  6. Leapman, R. D., Fejes, P. L., and Silcox, J. (1983) Orientation dependence of core edges from anisotropic materials determined by inelastic scattering of fast electrons. Phys. Rev. B 28, 2361–2373.CrossRefGoogle Scholar
  7. Møller, C. (1932) Zur Theorie des Durchangs schneller Elektronen durch materie. Ann. Phys. (Leipzig) 14, 531–585.Google Scholar
  8. Perez, J.-P., Sevely, J., and Jouffrey, B. (1977) Straggling of fast electrons in aluminum foils observed in high-voltage electron microscopy (0.3–1.2 MV). Phys. Rev. A 16, 1061–1069.CrossRefGoogle Scholar
  9. Radtke, G., Botton, G. A., and Verbeeck, J. (2006) Electron inelastic scattering and anisotropy: The two-dimensional point of view. Ultramicroscopy 106, 1082–1090.CrossRefGoogle Scholar
  10. Schattschneider, P., Hébert, C., Franco, H., and Jouffrey, B. (2005) Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle. Phys. Rev. B 72, 045142 (8 pages).CrossRefGoogle Scholar
  11. Souche, C., Jouffrey, B., Hug, G., and Nelhiebel, M. (1998) Orientation sensitive EELS – Analysis of boron nitride nanometric hollow spheres. Micron 29, 419–424.CrossRefGoogle Scholar
  12. Sun, Y., and Yuan, J. (2005) Electron energy loss spectroscopy of core-electron excitation in anisotropic systems: Magic angle, magic orientation, and dichroism. Phys. Rev. B 71, 125109 (10 pages).CrossRefGoogle Scholar
  13. Zaluzec, N. J. (1984) K- and L-shell cross sections for x-ray microanalysis in an AEM. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 279–284.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics, Avadh Bhatia Physics LaboratoryUniversity of AlbertaEdmontonCanada

Personalised recommendations