Skip to main content

Nuclear Data and Cross Section Processing

  • Chapter
  • First Online:
  • 2685 Accesses

Abstract

The common approach of representing energy dependence of neutron–nucleus interactions consists of discretizing the energy dependence in a number of energy groups. During the fission reactions neutrons are emitted with an average energy of approximately 2 MeV. Neutron numbers are negligibly small above 10–15 MeV, making the maximum energy of interest in most nuclear fission reactors to be of about 15 MeV. Neutrons are then slowed down to much lower energies by collisions with the reactor components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Multilevel theory can also be used, and this method is available in addition to the single-level formulation in the legacy MINX code and in the general purpose NJOY code. Single-level theory is usually adequate, however.

  2. 2.

    The Maxwellian distribution holds strictly only for a gas, whereas the resonance absorber is a solid. Above a temperature referred to as the Debye temperature (based on Debye’s model for solids) this distribution is satisfactory for solids. The Debye temperature for most solids is of the order of 300 K: hence, the distribution holds for the entire range of fast reactor temperatures.

References

  1. I. I. Bondarenko, et al., Group Constants for Nuclear Reactor Calculations. Translation—Consultants Bureau Enterprises, Inc., New York, NY (1964).

    Google Scholar 

  2. R. B. Kidman, R. E. Schenter, R. W. Hardie, and W. W. Little, “The Shielding Factor Method of Generating Multigroup Cross Sections for Fast Reactor Analysis”, Nuclear Science and Engineering, 48 (1972) 193–201.

    Google Scholar 

  3. H. Henryson, B. J. Toppel, and C. G. Stenberg, “MC2-2: A Code to Calculate Fast Neutron Spectra und Multigroup Cross Sections”, ANL-8144, Argonne National Laboratory, Argonne, IL (1976).

    Google Scholar 

  4. M. K. Drake, “Data Formats und Procedures for the ENDF Neuron Cross Section Library”, BNL-50274, Brookhaven National Laboratory, New York, NY (April 1974 Revision).

    Google Scholar 

  5. M. B. Chadwick, P. Oblozinsky, M. Herman, N. M. Greene, R. D. McKnight, D. L. Smith, P. G. Young, R. E. MacFarlane, G. M. Hale, et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology”, Nuclear Data Sheets, 107 (2006) 2931–3060.

    Article  Google Scholar 

  6. H. H. Hummel and D. Okrent, Reactivity Coefficients in Large Fast Power Reactors, American Nuclear Society, LaGrange Park, IL (1970).

    Google Scholar 

  7. L. Dresner, Resonance Absorption in Nuclear Reactors, Pergamon Press, New York, NY (1960).

    Google Scholar 

  8. R. E. MacFarlane and D. W. Muir, “The NJOY Nuclear Data Processing System Version 91”, LA-12740-M, Los Alamos, NM (1994).

    Book  Google Scholar 

  9. A. Fessler and D. L. Smith, “Parameter Sensitivities in Nnuclear Reaction Cross-Section Calculations”, Annals of Nuclear Energy, 29 (4)(2002) 363–384.

    Article  Google Scholar 

  10. P. Finck, D. Keyes, and R. Stevens, “Workshop on Simulation and Modeling for Advanced Nuclear Energy Systems”, , DOE, Washington, DC (August 15–17, 2006).

    Google Scholar 

  11. L. Schroeder and E. Lusk, “Report of the Nuclear Physics and Related Computational Science R&D for Advanced Fuel Cycles Workshop”, Bethesda, MD, (August 10–12, 2006).

    Google Scholar 

  12. C. R. Weisbin, P. D. Soran, R. E. MacFarlane, D. R. Morris, R. J. LaBauve, J. S. Hendricks, J. E. White, and R. B. Kidman, MINX: A Multigroup Integration of Nuclear X-Sections from ENDF/B. LA-6486-MS, Los Alamos Scientific Laboratory, Los Alamos, NM (1976).

    Google Scholar 

  13. W. J. Davis, M. B. Yarborough, and A. D. Bortz, “SPHINX : A One-Dimensional Diffusion and Transport Nuclear Cross Section Processing Code”, WARD-XS-3045-17, Westinghouse, Advanced Reactors Division, Madison, PA (1977).

    Google Scholar 

  14. R. E. Schenter, J. L. Baker, and R. B. Kidman, “ETOX, A Code to Calculate Group Constants for Nuclear Reactor Calculations”, BNWL-1002, Battelle Northwest Laboratory, Washington, DC (1969).

    Book  Google Scholar 

  15. R. W. Hardie and W. W. Little Jr., “1DX, A One Dimensional Diffusion Code for Generating Effective Nuclear Cross Sections”, BNWL-954, Battelle Northwest Laboratory, Washington, DC (1969).

    Book  Google Scholar 

  16. B. A. Hutchins, C. L. Cowan, M. D. Kelly, and J. B. Turner, “ENDRUN-II, a Computer Code to Generate a Generalized Multigroup Data File from ENDF/B”, GEAP-13704, General Electric Company, USA (March 1971).

    Google Scholar 

  17. C. L. Cowan, B. A. Hutchins, and J. E. Turner, “TDOWN—A Code to Generate Composition and Spatially Dependent Cross Sections”, GEAP-13740, General Electric (1971). (See also R. Protsik, E. Kujawski, and C. L. Cowan, “TDOWN-IV”, GEFR-00485, General Electric, 1979).

    Google Scholar 

  18. K. O. Ott and W. A. Bezella, Introductory Nuclear Reactor Statics, American Nuclear Society, La Grange Park, IL (1989).

    Google Scholar 

  19. K. Gregson, M. F. James, and D. S. Norton, “MLBW—A Multilevel Breit- Wigner Computer Programme”, UKAEA Report AEEW-M-517, UKAEA, UK (1965).

    Google Scholar 

  20. D. I. Garber and R. R. Kinsey, Neutron Cross Sections, Vol. II, Curves, 3rd ed. BNL 325, Brookhaven National Laboratory, Upton, NY (January 1976).

    Google Scholar 

  21. C. E. Porter and R. G. Thomas, “Fluctuation of Nuclear Reaction Widths”, Physical Review, 104 (1956) 483.

    Article  Google Scholar 

  22. K. Devan and R. S. Keshavamurthy, “Extension of Rational Approximations to p-wave Collision Amplitudes in Reich-Moore Formalism”, Annals of Nuclear Energy, 28 (2001) 1013.

    Article  Google Scholar 

  23. R. N. Hwang, “An Overview of Resonance Theory in Reactor Physics Applications”, Transactions of the American Nuclear Society, 91 (2004) 735.

    Google Scholar 

  24. W. M. Stacey, Nuclear Reactor Physics, 439–452, Wiley-VCH, Berlin (2007).

    Book  Google Scholar 

  25. G. I. Bell, “A Simple Treatment of the Effective Resonance Absorption Cross Sections in Dense Lattices”, Nuclear Science and Engineering, 5 (1958) 138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tsvetkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tsvetkov, P., Waltar, A. (2012). Nuclear Data and Cross Section Processing. In: Waltar, A., Todd, D., Tsvetkov, P. (eds) Fast Spectrum Reactors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9572-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9572-8_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9571-1

  • Online ISBN: 978-1-4419-9572-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics