Skip to main content

Graph-Matrix Calculus for Computational Convex Analysis

  • Chapter
  • First Online:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

We introduce a new family of algorithms for computing fundamental operators arising from convex analysis. The new algorithms rely on the fact that the graph of the subdifferential of most convex operators depends linearly on the graph of the subdifferential of the function. By storing the subdifferential information, the computation of the conjugate is reduced to a matrix multiplication. We explain how other operators can be computed similarly, and present numerical experiments that compare graph-matrix calculus algorithms with piecewise-linear quadratic algorithms from computational convex analysis (CCA), and with a bundle method using warmstarting. Our results show that the new algorithms are an order of magnitude faster. They also add subdifferential calculus to our numerical library, and are very simple to implement.

AMS 2010 Subject Classification: 90C25, 26A51, 26B25, 47H05, 52A41

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauschke, H.H., Wang, X.: The kernel average of two convex functions and its application to the extension and representation of monotone operators. Trans. Amer. Math. Soc. 361, 5947–5965 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Lucet, Y., Wang, X.: Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators. SIAM J. Control Optim. 46, 2031–2051 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Lucet, Y., Trienis, M.: How to transform one convex function continuously into another. SIAM Rev. 50, 115–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: Basic theory. SIAM J. Optim. 19, 768–785 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Moffat, S.M., Wang, X.: Self-dual smooth approximations of convex functions via the proximal average. Tech. Rep. arXiv:1003.5866v1 [math.FA], UBC Okanagan (2010)

    Google Scholar 

  7. Brenier, Y.: Un algorithme rapide pour le calcul de transformées de Legendre–Fenchel discrètes. C. R. Acad. Sci. Paris Sér. I Math. 308, 587–589 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Computational Convex Analysis library. https://people.ok.ubc.ca/ylucet/cca.html (1996–2009)

  9. Corrias, L.: Fast Legendre–Fenchel transform and applications to Hamilton–Jacobi equations and conservation laws. SIAM J. Numer. Anal. 33, 1534–1558 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Tech. Rep. TR2004-1963, Cornell Computing and Information Science (2004)

    Google Scholar 

  11. Gardiner, B., Lucet, Y.: Numerical computation of Fitzpatrick functions. J. Convex Anal. 16, 779–790 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Goebel, R.: Self-dual smoothing of convex and saddle functions. J. Convex Anal. 15, 179–190 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Hare, W.: A proximal average for nonconvex functions: A proximal stability perspective. SIAM J. Optim. 20, 650–666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305–306. Springer, Berlin (1993)

    Google Scholar 

  15. Hiriart-Urruty, J.B., Lucet, Y.: Parametric computation of the Legendre–Fenchel conjugate. J. Convex Anal. 14, 657–666 (2007)

    MathSciNet  Google Scholar 

  16. Koch, V., Johnstone, J., Lucet, Y.: Convexity of the proximal average. Tech. rep., University of British Columbia (2010). Accepted for publication in Journal of Optimization Theory and Applications

    Google Scholar 

  17. Lucet, Y.: A fast computational algorithm for the Legendre–Fenchel transform. Comput. Optim. Appl. 6, 27–57 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lucet, Y.: Faster than the Fast Legendre Transform, the Linear-time Legendre Transform. Numer. Algorithms 16, 171–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lucet, Y.: Fast Moreau envelope computation I: Numerical algorithms. Numer. Algorithms 43, 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucet, Y.: New sequential exact Euclidean distance transform algorithms based on convex analysis. Image and Vision Computing 27, 37–44 (2009)

    Article  Google Scholar 

  21. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20, 216–250 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear-quadratic model for computational convex analysis. Comput. Optim. Appl. 43, 95–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moffat, S.M.: On the kernel average of n functions. Master’s thesis, Department of Mathematics, University of British Columbia (2009)

    Google Scholar 

  24. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  25. Noullez, A., Vergassola, M.: A fast Legendre transform algorithm and applications to the adhesion model. J. Sci. Comput. 9, 259–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  27. She, Z.S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Comm. Math. Phys. 148, 623–641 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the two referees for their careful reading of the manuscripts and their multiple comments, which resulted in correcting an error in Lemma 12.4.

Yves Lucet was partially supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Gardiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gardiner, B., Lucet, Y. (2011). Graph-Matrix Calculus for Computational Convex Analysis. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_12

Download citation

Publish with us

Policies and ethics