Skip to main content

Animal Models of SAH and Their Translation to Clinical SAH

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

Animal models of stroke may be useful for elucidating mechanisms of disease, but they have arguably not been particularly successful at predicting what treatments will be successful for ischemic stroke in humans. Animal models of subarachnoid hemorrhage also have been developed in rodents, dogs, and nonhuman primates. These models mimic angiographic vasospasm and some aspects of subarachnoid hemorrhage such as the transient global ischemia that sometimes occurs at the time of rupture of an aneurysm. Since the detailed acute and delayed pathologic effects of subarachnoid hemorrhage on human brain are not well delineated, how the animal models replicate this is unknown. Nevertheless, meta-analysis of the literature suggests that clinical trials of drugs for angiographic vasospasm in humans have been effective, and that some animal models accurately reflect what the effects of drugs are in humans. Analysis of animal models and comparison of drug effects on angiographic vasospasm in humans and animals suggest injection of autologous blood into the basal cisterns; assessment of vasospasm more than 3 days after the injection and intrathecal delivery of drugs may be better ways to study drugs in animals, in terms of translation to success in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen GS, Bahr AL. Cerebral arterial spasm: part 10. Reversal of acute and chronic spasm in dogs with orally administered nifedipine. Neurosurgery. 1979;4:43–7.

    PubMed  CAS  Google Scholar 

  2. Altay T, Smithason S, Volokh N, et al. A novel method for subarachnoid hemorrhage to induce vasospasm in mice. J Neurosci Methods. 2009;183:136–40.

    PubMed  Google Scholar 

  3. Barry KJ, Gogjian MA, Stein BM. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 1979;10:538–41.

    PubMed  CAS  Google Scholar 

  4. Brawley BW, Strandness DEJ, Kelly WA. The biphasic response of cerebral vasospasm in experimental subarachnoid hemorrhage. J Neurosurg. 1968;28:1–8.

    PubMed  CAS  Google Scholar 

  5. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.

    PubMed  CAS  Google Scholar 

  6. Clower BR, Smith RR, Haining JL, et al. Constrictive endarteropathy following experimental subarachnoid hemorrhage. Stroke. 1981;12:501–8.

    PubMed  CAS  Google Scholar 

  7. Clower BR, Yamamoto Y, Cain L, et al. Endothelial injury following experimental subarachnoid hemorrhage in rats: effects on brain blood flow. Anat Rec. 1994;240:104–14.

    PubMed  CAS  Google Scholar 

  8. Cosar M, Eser O, Fidan H, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol. 2009;71:54–9.

    PubMed  Google Scholar 

  9. Delgado-Zygmunt T, Arbab MA, Shiokawa Y, et al. Cerebral blood flow and glucose metabolism in the squirrel monkey during the late phase of cerebral vasospasm. Acta Neurochir. 1993;121:166–73.

    CAS  Google Scholar 

  10. Delgado-Zygmunt TJ, Arbab MA, Shiokawa Y, et al. A primate model for acute and late cerebral vasospasm: angiographic findings. Acta Neurochir. 1992;118:130–6.

    CAS  Google Scholar 

  11. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    PubMed  Google Scholar 

  12. Dreier JP, Windmuller O, Petzold G, et al. Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery. 2002;51:1457–65.

    PubMed  Google Scholar 

  13. Eldevik OP, Kristiansen K, Torvik A. Subarachnoid hemorrhage and cerebrovascular spasm. Morphological study of intracranial arteries based on animal experiments and human autopsies. J Neurosurg. 1981;55:869–76.

    PubMed  CAS  Google Scholar 

  14. Endo S, Branson PJ, Alksne JF. Experimental model of symptomatic vasospasm in rabbits. Stroke. 1988;19:1420–5.

    PubMed  CAS  Google Scholar 

  15. Espinosa F, Weir B, Shnitka T, et al. A randomized placebo-controlled double-blind trial of nimodipine after SAH in monkeys. Part 2: pathological findings. J Neurosurg. 1984;60:1176–85.

    PubMed  CAS  Google Scholar 

  16. Etminan N, Vergouwen MD, Ilodigwe D, et al. Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab. 2011;31:1443–51.

    PubMed  CAS  Google Scholar 

  17. Feiler S, Friedrich B, Scholler K, et al. Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. J Neurosci Methods. 2010;190:164–70.

    PubMed  Google Scholar 

  18. Fein JM, Flor WJ, Cohan SL, et al. Sequential changes of vascular ultrastructure in experimental cerebral vasospasm. Myonecrosis of subarachnoid arteries. J Neurosurg. 1974;41:49–58.

    PubMed  CAS  Google Scholar 

  19. Findlay JM, Weir BK, Kanamaru K, et al. Arterial wall changes in cerebral vasospasm. Neurosurgery. 1989;25:736–45.

    PubMed  CAS  Google Scholar 

  20. Gao J, Wang H, Sheng H, et al. A novel apoE-derived therapeutic reduces vasospasm and improves outcome in a murine model of subarachnoid hemorrhage. Neurocrit Care. 2006;4:25–31.

    PubMed  CAS  Google Scholar 

  21. Germano A, Costa C, DeFord SM, et al. Systemic administration of a calpain inhibitor reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma. 2002;19:887–96.

    PubMed  CAS  Google Scholar 

  22. Grasso G, Buemi M, Alafaci C, et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci USA. 2002;99:5627–31.

    PubMed  CAS  Google Scholar 

  23. Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002;283:H2551–9.

    PubMed  CAS  Google Scholar 

  24. Guresir E, Raabe A, Jaiimsin A, et al. Histological evidence of delayed ischemic brain tissue damage in the rat double-hemorrhage model. J Neurol Sci. 2010;293:18–22.

    PubMed  Google Scholar 

  25. Hansen-Schwartz J, Hoel NL, Xu CB, et al. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. J Neurosurg. 2003;99:115–20.

    PubMed  CAS  Google Scholar 

  26. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions. In: The cochrane collaboration, 2008. Available at www.cochrane-handbook.org. Accessed Aug 8, 2011

  27. Hop JW, Rinkel GJ, Algra A, et al. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997;28:660–4.

    PubMed  CAS  Google Scholar 

  28. Ishiguro M, Puryear CB, Bisson E, et al. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2002;283:H2217–25.

    PubMed  CAS  Google Scholar 

  29. Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–53.

    PubMed  Google Scholar 

  30. Jackowski A, Crockard A, Burnstock G, et al. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10:835–49.

    PubMed  CAS  Google Scholar 

  31. Jadhav V, Sugawara T, Zhang J, et al. Magnetic resonance imaging detects and predicts early brain injury after subarachnoid hemorrhage in a canine experimental model. J Neurotrauma. 2008;25:1099–106.

    PubMed  Google Scholar 

  32. Jeon H, Ai J, Sabri M, et al. Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience. 2010;169:1805–14.

    PubMed  CAS  Google Scholar 

  33. Jeon H, Ai J, Sabri M, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103.

    PubMed  Google Scholar 

  34. Josko J, Gwozdz B, Hendryk S, et al. Expression of vascular endothelial growth factor (VEGF) in rat brain after subarachnoid haemorrhage and endothelin receptor blockage with BQ-123. Folia Neuropathol. 2001;39:243–51.

    PubMed  CAS  Google Scholar 

  35. Kamii H, Kato I, Kinouchi H, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke. 1999;30:867–71.

    PubMed  CAS  Google Scholar 

  36. Kanamaru K, Weir BK, Findlay JM, et al. Pharmacological studies on relaxation of spastic primate cerebral arteries in subarachnoid hemorrhage. J Neurosurg. 1989;71:909–15.

    PubMed  CAS  Google Scholar 

  37. Kaoutzanis M, Yokota M, Sibilia R, et al. Neurologic evaluation in a canine model of single and double subarachnoid hemorrhage. J Neurosci Methods. 1993;50:301–7.

    PubMed  CAS  Google Scholar 

  38. Kistler JP, Lees RS, Candia G, et al. Intravenous nitroglycerin in experimental cerebral vasospasm. A preliminary report. Stroke. 1979;10:26–9.

    PubMed  CAS  Google Scholar 

  39. Kuwayama A, Zervas NT, Belson R, et al. A model for experimental cerebral arterial spasm. Stroke. 1972;3:49–56.

    PubMed  CAS  Google Scholar 

  40. Laslo AM, Eastwood JD, Pakkiri P, et al. CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2008;29:79–85.

    PubMed  CAS  Google Scholar 

  41. Lee JY, Huang DL, Keep R, et al. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. J Neurosci Methods. 2008;168:358–66.

    PubMed  Google Scholar 

  42. Lin CL, Calisaneller T, Ukita N, et al. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods. 2003;123:89–97.

    PubMed  Google Scholar 

  43. Liszczak TM, Varsos VG, Black PM, et al. Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg. 1983;58:18–26.

    PubMed  CAS  Google Scholar 

  44. Lougheed WM, Tom M. A method of introducing blood into the subarachnoid space in the region of the circle of Willis in dogs. Can J Surg. 1961;4:329–37.

    PubMed  CAS  Google Scholar 

  45. Macdonald RL, Weir B. Cerebral vasospasm. San Diego: Academic; 2001.

    Google Scholar 

  46. Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24:415–34.

    PubMed  Google Scholar 

  47. Marshman LA, Morice AH, Thompson JS. Increased efficacy of sodium nitroprusside in middle cerebral arteries following acute subarachnoid hemorrhage: indications for its use after rupture. J Neurosurg Anesthesiol. 1998;10:171–7.

    PubMed  CAS  Google Scholar 

  48. Mayberg MR, Okada T, Bark DH. Morphologic changes in cerebral arteries after subarachnoid hemorrhage. Neurosurg Clin N Am. 1990;1:417–32.

    PubMed  CAS  Google Scholar 

  49. McQueen JD, Jeanes LD. Influence of hypothermia on intracranial hypertension. J Neurosurg. 1962;19:277–88.

    Google Scholar 

  50. Meguro T, Chen B, Lancon J, et al. Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem. 2001;77:1128–35.

    PubMed  CAS  Google Scholar 

  51. Megyesi JF, Findlay JM, Vollrath B, et al. In vivo angioplasty prevents the development of vasospasm in canine carotid arteries. Pharmacological and morphological analyses. Stroke. 1997;28:1216–24.

    PubMed  CAS  Google Scholar 

  52. Mignini LE, Khan KS. Methodological quality of systematic reviews of animal studies: a survey of reviews of basic research. BMC Med Res Methodol. 2006;6:10.

    PubMed  Google Scholar 

  53. Miyamoto Y, Matsuda M. Cerebral blood flow and somatosensory evoked potentials in dogs with experimental vasospasm caused by double injection. Archiv Jpn Chirgurie. 1991;60:289–98.

    CAS  Google Scholar 

  54. Murakami K, Koide M, Dumont TM, et al. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res. 2011;2:72–9.

    PubMed  CAS  Google Scholar 

  55. Nagasawa S, Handa H, Naruo Y, et al. Experimental cerebral vasospasm arterial wall mechanics and connective tissue composition. Stroke. 1982;13:595–600.

    PubMed  CAS  Google Scholar 

  56. Nakagomi T, Kassell NF, Sasaki T, et al. Impairment of endothelium-dependent vasodilation induced by acetylcholine and adenosine triphosphate following experimental subarachnoid hemorrhage. Stroke. 1987;18:482–9.

    PubMed  CAS  Google Scholar 

  57. Nozaki K, Okamoto S, Uemura Y, et al. Changes of glycogen and ATP contents of the major cerebral arteries after experimentally produced subarachnoid haemorrhage in the dog. Acta Neurochir. 1990;104:38–41.

    CAS  Google Scholar 

  58. Nuki Y, Tsou TL, Kurihara C, et al. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54:1337–44.

    PubMed  CAS  Google Scholar 

  59. Ohkuma H, Suzuki S, Ogane K. Phenotypic modulation of smooth muscle cells and vascular remodeling in intraparenchymal small cerebral arteries after canine experimental subarachnoid hemorrhage. Neurosci Lett. 2003;344:193–6.

    PubMed  CAS  Google Scholar 

  60. Okada T, Harada T, Bark DH, et al. A rat femoral artery model for vasospasm. Neurosurgery. 1990;27:349–56.

    PubMed  CAS  Google Scholar 

  61. Park IS, Meno JR, Witt CE, et al. Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods. 2008;172:195–200.

    PubMed  Google Scholar 

  62. Park S, Yamaguchi M, Zhou C, et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35:2412–7.

    PubMed  CAS  Google Scholar 

  63. Parra A, McGirt MJ, Sheng H, et al. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:510–6.

    PubMed  Google Scholar 

  64. Perkins E, Kimura H, Parent AD, et al. Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs. J Neurosurg. 2002;97:896–904.

    PubMed  Google Scholar 

  65. Pluta RM, Hansen-Schwartz J, Dreier J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.

    PubMed  CAS  Google Scholar 

  66. Prunell GF, Mathiesen T, Diemer NH, et al. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–75.

    PubMed  Google Scholar 

  67. Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13:2553–6.

    PubMed  Google Scholar 

  68. Prunell GF, Mathiesen T, Svendgaard NA. Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004;54:426–36.

    PubMed  Google Scholar 

  69. Prunell GF, Svendgaard NA, Alkass K, et al. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.

    PubMed  Google Scholar 

  70. Rosengart AJ, Schultheiss KE, Tolentino J, et al. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2315–21.

    PubMed  Google Scholar 

  71. Ryba MS, Gordon-Krajcer W, Walski M, et al. Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage in the rat brain and improves neurological outcome. Brain Res. 1999;850:225–33.

    PubMed  CAS  Google Scholar 

  72. Sabri M, Ai J, Macdonald RL. Dissociation of vasospasm and secondary effects of experimental subarachnoid hemorrhage by clazosentan. Stroke. 2011;42:1454–60.

    PubMed  CAS  Google Scholar 

  73. Sabri M, Ai J, Marsden PA, et al. Simvastatin re-couples dysfunctional endothelial nitric oxide synthase in experimental subarachnoid hemorrhage. PLoS One. 2011;6:e17062.

    PubMed  CAS  Google Scholar 

  74. Sabri M, Jeon H, Ai J, et al. Anterior circulation mouse model of subarachnoid hemorrhage. Brain Res. 2009;1295:179–85.

    PubMed  CAS  Google Scholar 

  75. Sabri M, Kawashima A, Ai J, et al. Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res. 2008;1238:163–71.

    PubMed  CAS  Google Scholar 

  76. Sahlin C, Owman C, Chang JY, et al. Changes in contractile response and effect of a calcium antagonist, nimodipine, in isolated intracranial arteries of baboon following experimental subarachnoid hemorrhage. Brain Res Bull. 1990;24:355–61.

    PubMed  CAS  Google Scholar 

  77. Sasaki T, Murota SI, Wakai S, et al. Evaluation of prostaglandin biosynthetic activity in canine basilar artery following subarachnoid injection of blood. J Neurosurg. 1981;55:771–8.

    PubMed  CAS  Google Scholar 

  78. Sasaki T, Wakai S, Asano T, et al. Prevention of cerebral vasospasm after SAH with a thromboxane synthetase inhibitor, OKY-1581. J Neurosurg. 1982;57:74–82.

    PubMed  CAS  Google Scholar 

  79. Schatlo B, Dreier JP, Glasker S, et al. Report of selective cortical infarcts in the primate clot model of vasospasm after subarachnoid hemorrhage. Neurosurgery. 2010;67:721–8.

    PubMed  Google Scholar 

  80. Schwartz AY, Masago A, Sehba FA, et al. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods. 2000;96:161–7.

    PubMed  CAS  Google Scholar 

  81. Seckin H, Simsek S, Ozturk E, et al. Topiramate attenuates hippocampal injury after experimental subarachnoid hemorrhage in rabbits. Neurol Res. 2009;31:490–5.

    PubMed  CAS  Google Scholar 

  82. Sehba FA, Flores R, Muller A, et al. Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg. 2010;113:826–34.

    PubMed  Google Scholar 

  83. Shiokawa K, Kasuya H, Miyajima M, et al. Prophylactic effect of papaverine prolonged-release pellets on cerebral vasospasm in dogs. Neurosurgery. 1998;42:109–15.

    PubMed  CAS  Google Scholar 

  84. Silasi G, Colbourne F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res. 2009;198:380–7.

    PubMed  Google Scholar 

  85. Simeone FA, Ryan KG, Cotter JR. Prolonged experimental cerebral vasospasm. J Neurosurg. 1968;29:357–66.

    PubMed  CAS  Google Scholar 

  86. Solomon RA, Antunes JL, Chen RYZ, et al. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke. 1985;16:58–64.

    PubMed  CAS  Google Scholar 

  87. Sozen T, Tsuchiyama R, Hasegawa Y, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009;40:2519–25.

    PubMed  CAS  Google Scholar 

  88. Stein SC, Browne KD, Chen XH, et al. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59:781–7.

    PubMed  Google Scholar 

  89. Sugawara T, Ayer R, Jadhav V, et al. Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J Neurosci Res. 2008;86:3635–43.

    PubMed  CAS  Google Scholar 

  90. Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    PubMed  Google Scholar 

  91. Svendgaard NA, Brismar J, Delgado T, et al. Late cerebral arterial spasm: the cerebrovascular response to hypercapnia, induced hypertension and the effect of nimodipine on blood flow autoregulation in experimental subarachnoid hemorrhage in primates. Gen Pharmacol. 1983;14:167–72.

    PubMed  CAS  Google Scholar 

  92. Takata K, Sheng H, Borel CO, et al. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol. 2008;213:336–44.

    PubMed  CAS  Google Scholar 

  93. The Stroke Therapy Academic Industry Round Table (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30:2752–8.

    Google Scholar 

  94. Titova E, Ostrowski RP, Zhang JH, et al. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res. 2009;31(6):568–81.

    PubMed  Google Scholar 

  95. van den Bergh WM, Schepers J, Veldhuis WB, et al. Magnetic resonance imaging in experimental subarachnoid haemorrhage. Acta Neurochir (Wien). 2005;147:977–83.

    Google Scholar 

  96. van der Worp HB, Howells DW, Sena ES, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245.

    PubMed  Google Scholar 

  97. Vatter H, Konczalla J, Weidauer S, et al. Characterization of the endothelin-B receptor expression and vasomotor function during experimental cerebral vasospasm. Neurosurgery. 2007;60:1100–8.

    PubMed  Google Scholar 

  98. Vatter H, Weidauer S, Konczalla J, et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 2006;58:1190–7.

    PubMed  Google Scholar 

  99. Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 1995;26:1279–83.

    PubMed  CAS  Google Scholar 

  100. Vergouwen MD, Vermeulen M, Coert BA, et al. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.

    PubMed  Google Scholar 

  101. Vikman P, Beg S, Khurana T, et al. Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg. 2006;105:438–44.

    PubMed  CAS  Google Scholar 

  102. Vorkapic P, Bevan RD, Bevan JA. Longitudinal time course of reversible and irreversible components of chronic cerebrovasospasm of the rabbit basilar artery. J Neurosurg. 1991;74:951–5.

    PubMed  CAS  Google Scholar 

  103. Wakade C, King MD, Laird MD, et al. Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal. 2009;11:35–45.

    PubMed  CAS  Google Scholar 

  104. Weir B, Erasmo R, Miller J, et al. Vasospasm in response to repeated subarachnoid hemorrhages in the monkey. J Neurosurg. 1970;33:395–406.

    PubMed  CAS  Google Scholar 

  105. Wilkins RH, Levitt P. Intracranial arterial spasm in the dog. A chronic experimental model. J Neurosurg. 1970;33:260–9.

    PubMed  CAS  Google Scholar 

  106. Yamamoto S, Teng W, Kakiuchi T, et al. Disturbance of cerebral blood flow autoregulation in hypertension is attributable to ischaemia following subarachnoid haemorrhage in rats: a PET study. Acta Neurochir. 1999;141:1213–9.

    CAS  Google Scholar 

  107. Yatsushige H, Yamaguchi M, Zhou C, et al. Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke. 2005;36:1538–43.

    PubMed  CAS  Google Scholar 

  108. Zhou C, Yamaguchi M, Kusaka G, et al. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:419–31.

    PubMed  CAS  Google Scholar 

  109. Zhou ML, Shi JX, Zhu JQ, et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods. 2007;159:318–24.

    PubMed  Google Scholar 

  110. Zoerle T, Ilodigwe D, Wan H, et al. Pharmacologic prevention of cerebral vasospasm in experimental subarachnoid hemorrhage: systematic review and meta-analysis. Submitted 2011.

    Google Scholar 

  111. Zubkov AY, Aoki K, Parent AD, et al. Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sci. 2002;70:3007–18.

    PubMed  CAS  Google Scholar 

  112. Zuccarello M, Boccaletti R, Tosun M, et al. Role of extracellular Ca2+ in subarachnoid hemorrhage-induced spasm of the rabbit basilar artery. Stroke. 1996;27:1896–902.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Loch Macdonald MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoerle, T., Macdonald, R.L. (2012). Animal Models of SAH and Their Translation to Clinical SAH. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_29

Download citation

Publish with us

Policies and ethics