Skip to main content

The Splenic Response to Ischemic Stroke: Neuroinflammation, Immune Cell Migration, and Experimental Approaches to Defining Cellular Mechanisms

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

The neural sequelae resulting from ischemic stroke involve multiple physiological systems resulting in acute injury followed by delayed cellular degeneration. Clinical studies targeting early neural injury uncovered in animal models of stroke have resulted in poor outcomes. The limited success of these approaches has broadened investigation into the delayed phase of infarct expansion, whereby the penumbral tissue surrounding the initial core infarct can be rescued prior to irreversible injury. Of particular relevance are the neuroimmune mechanisms that are activated from several hours to days following ischemic stroke and eventually lead to permanent infarction that cannot be rescued. New findings from animal studies suggest that the therapeutic window is wider than previously thought, thus allowing for selective targeting of inflammatory processes prior to irreversible injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  2. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. Mutant presenilins of Alzheimer’s disease increase production of 42 residue amyloid B-protein in both transfected cells and transgenic mice. Nature Med. 1997;3:67–72.

    Article  PubMed  CAS  Google Scholar 

  3. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, et al. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke. 2000;31(2):347–54.

    Article  PubMed  CAS  Google Scholar 

  4. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  PubMed  CAS  Google Scholar 

  5. Newcomb JD, Ajmo CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determine therapeutic efficacy. Cell Transplant. 2006;15(3):213–23.

    Article  PubMed  Google Scholar 

  6. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62(2):127–36.

    PubMed  CAS  Google Scholar 

  7. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734–44.

    Article  PubMed  CAS  Google Scholar 

  8. Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, et al. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke. 2001;32(11):2665–74.

    Article  PubMed  CAS  Google Scholar 

  9. Cuadrado E, Ortega L, Hernandez-Guillamon M, Penalba A, Fernandez-Cadenas I, Rosell A, et al. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 2008;84(1):207–14.

    Article  PubMed  CAS  Google Scholar 

  10. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.

    Article  PubMed  CAS  Google Scholar 

  11. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21.

    Article  PubMed  CAS  Google Scholar 

  12. da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Cottrell JR, et al. Transforming growth factor-beta1 in adult human microglia and its stimulated production by interleukin-1. J Interferon Cytokine Res. 1997;17(11):655–64.

    PubMed  Google Scholar 

  13. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27(10):2596–605.

    Article  PubMed  CAS  Google Scholar 

  14. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14.

    Article  PubMed  Google Scholar 

  15. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20(3):132–9.

    Article  PubMed  CAS  Google Scholar 

  16. Vendrame M, Gemma C, De Mesquita D, Collier L, Bickford PC, Sanberg CD, et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14:595–604.

    Article  PubMed  CAS  Google Scholar 

  17. Giulian D. Immune responses and dementia. Ann N Y Acad Sci. 1997;835:91–110.

    Article  PubMed  CAS  Google Scholar 

  18. Leonardo CC, Hall AA, Collier LA, Ajmo Jr CT, Willing AE, Pennypacker KR. Human umbilical cord blood cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after middle cerebral artery occlusion. J Neurosci Res. 2010;88(6):1213–22.

    PubMed  CAS  Google Scholar 

  19. Jean WC, Spellman SR, Nussbaum ES, Low WC. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery. 1998;43(6):1382–96; discussion 96–7.

    Google Scholar 

  20. Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, et al. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke. 1994;25(7):1469–75.

    Article  PubMed  CAS  Google Scholar 

  21. Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867–75.

    Article  PubMed  CAS  Google Scholar 

  22. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007;27(11):1798–805.

    Article  PubMed  CAS  Google Scholar 

  23. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008;131(Pt 3):616–29.

    Article  PubMed  Google Scholar 

  24. Subramanian S, Zhang B, Kosaka Y, Burrows GG, Grafe MR, Vandenbark AA, et al. Recombinant T cell receptor ligand treats experimental stroke. Stroke. 2009;40(7):2539–45.

    Article  PubMed  CAS  Google Scholar 

  25. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2009;35(1):89–102.

    Article  PubMed  CAS  Google Scholar 

  26. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res. 2002;932(1–2):110–9.

    Article  PubMed  CAS  Google Scholar 

  27. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol. 2000;15(7):718–24.

    Article  PubMed  CAS  Google Scholar 

  28. Fan C, Zwacka RM, Engelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med. 1999;77(8):577–92.

    Article  PubMed  CAS  Google Scholar 

  29. Okuaki Y, Miyazaki H, Zeniya M, Ishikawa T, Ohkawa Y, Tsuno S, et al. Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver. 1996;16(3):188–94.

    PubMed  CAS  Google Scholar 

  30. Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery. 2007;141(1):32–40.

    Article  PubMed  Google Scholar 

  31. Savas MC, Ozguner M, Ozguner IF, Delibas N. Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg. 2003;38(10):1465–70.

    Article  PubMed  Google Scholar 

  32. Ajmo Jr CT, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86(10):2227–34.

    Article  PubMed  CAS  Google Scholar 

  33. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176(11):6523–31.

    PubMed  CAS  Google Scholar 

  34. Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, et al. Immediate splenectomy decreases mortality and improves cognitive function of rats after severe traumatic brain injury. J Trauma. 2011;71(1):141–7.

    Article  PubMed  Google Scholar 

  35. Braun JS, Prass K, Dirnagl U, Meisel A, Meisel C. Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp Neurol. 2007;206(2):183–91.

    Article  PubMed  CAS  Google Scholar 

  36. Gendron A, Teitelbaum J, Cossette C, Nuara S, Dumont M, Geadah D, et al. Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res. 2002;955(1–2):85–97.

    Article  PubMed  CAS  Google Scholar 

  37. Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport. 2004;15(2):357–61.

    Article  PubMed  CAS  Google Scholar 

  38. Mignini F, Streccioni V, Amenta F. Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol. 2003;23(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  39. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol. 1985;135(2 Suppl):755s–65.

    PubMed  CAS  Google Scholar 

  40. Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79(6):1093–104.

    Article  PubMed  CAS  Google Scholar 

  41. Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, et al. Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Immun. 2010;25(2):260–9.

    Article  PubMed  Google Scholar 

  42. Ajmo Jr CT, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  43. Li HL, Kostulas N, Huang YM, Xiao BG, van der Meide P, Kostulas V, et al. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. J Neuroimmunol. 2001;116(1):5–14.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238(1):247–62.

    Article  PubMed  CAS  Google Scholar 

  45. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.

    Article  PubMed  CAS  Google Scholar 

  46. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12.

    Article  PubMed  Google Scholar 

  47. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience. 2009;158(3):1007–20.

    Article  PubMed  CAS  Google Scholar 

  48. Filen S, Ylikoski E, Tripathi S, West A, Bjorkman M, Nystrom J, et al. Activating transcription factor 3 is a positive regulator of human IFNG gene expression. J Immunol. 2010;184(9):4990–9.

    Article  PubMed  CAS  Google Scholar 

  49. Loetscher P, Pellegrino A, Gong JH, Mattioli I, Loetscher M, Bardi G, et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem. 2001;276(5):2986–91.

    Article  PubMed  CAS  Google Scholar 

  50. Makinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Narvanen A, et al. Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res. 2006;1123(1):207–15.

    Article  PubMed  Google Scholar 

  51. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.

    Article  PubMed  CAS  Google Scholar 

  52. Chen SH, Chang FM, Tsai YC, Huang KF, Lin CL, Lin MT. Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Exp Neurol. 2006;199(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  53. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35(10):2390–5.

    Article  PubMed  Google Scholar 

  54. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307.

    Article  PubMed  CAS  Google Scholar 

  55. Kees F, Jehkul A, Bucher M, Mair G, Kiermaier J, Grobecker H. Bioavailability of opipramol from a film-coated tablet, a sugar-coated tablet and an aqueous solution in healthy volunteers. Arzneimittelforschung. 2003;53(2):87–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Pennypacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leonardo, C.C., Seifert, H., Pennypacker, K.R. (2012). The Splenic Response to Ischemic Stroke: Neuroinflammation, Immune Cell Migration, and Experimental Approaches to Defining Cellular Mechanisms. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_23

Download citation

Publish with us

Policies and ethics