Identifying Vascular Targets to Treat Hemorrhagic Stroke

Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Hemorrhagic stroke is a devastating type of stroke that affects 20% of all stroke patients. In spite of the severity of morbidity and the high rate of mortality associated with hemorrhagic stroke, current treatment methods are quite insufficient to reduce long-term morbidity and high mortality rate, up to 50%, associated with bleeding into critical brain structures, the ventricles, and the subarachnoid space. Preclinical and translational research programs have led to significant advances in the understanding of important mechanisms that contribute to cell death and clinical deficits. The most important findings revolve around a key set of basic mechanisms intimately involved in brain bleeding, including activation of matrix membrane metalloproteinases (MMP), specifically MMP-2 and MMP-9, enhanced free radical production and oxidative stress, and both altered inflammatory and coagulation pathways. It is now becoming apparent and accepted that brain bleeding may result in the activation of a “hemorrhagic stroke cascade” in many cell types including neurons, glia, and vasculature. Moreover, in hemorrhage there is also activation of many components of the “ischemic stroke cascade.” The activation of multiple hemorrhage and ischemia pathways is a two-edged sword: it results in the activation of series of detrimental pathways, some of which are duplicated in each cascade, but they may allow for useful pharmacological intervention.

Because there is parallel or simultaneous activation of pathways, future therapies may have to rely on combining drugs or pleiotropic compounds with multi-target activities. This chapter will comprehensively review some of the possible targets for pharmacological intervention as well as address some new approaches to induce metabolic downregulation or inhibition of multiple pathways, with the goal of clinical improvement.


Brain Edema Hemorrhagic Stroke Heme Oxygenase Cerebral Amyloid Angiopathy Hemorrhagic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This article was supported by a U01 Translational research grant NS060685 to PAL.


  1. 1.
    Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):948–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.PubMedCrossRefGoogle Scholar
  4. 4.
    Lapchak PA. Hemorrhagic transformation following ischemic stroke: significance, causes, and relationship to therapy and treatment. Curr Neurol Neurosci Rep. 2002;2(1):38–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Lyden PD, Zivin JA. Hemorrhagic transformation after cerebral ischemia: mechanisms and incidence. Cerebrovasc Brain Metab Rev. 1993;5(1):1–16.PubMedGoogle Scholar
  6. 6.
    Bernstein RA, Del-Signore M. Recent advances in the management of acute intracerebral hemorrhage. Curr Neurol Neurosci Rep. 2005;5(6):483–7.PubMedCrossRefGoogle Scholar
  7. 7.
    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Toni D, Fiorelli M, Bastianello S, Sacchetti ML, Sette G, Argentino C, et al. Hemorrhagic transformation of brain infarct: predictability in the first 5 hours from stroke onset and influence on clinical outcome. Neurology. 1996;46(2):341–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Berwaerts J, Robb OJ, Dykhuizen RS, Webster J. Course, management and outcome of oral-anticoagulant-related intracranial haemorrhages. Scott Med J. 2000;45(4):105–9.PubMedGoogle Scholar
  11. 11.
    Flaherty ML, Kissela B, Woo D, Kleindorfer D, Alwell K, Sekar P, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology. 2007;68(2):116–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Khatri P, Wechsler LR, Broderick JP. Intracranial hemorrhage associated with revascularization therapies. Stroke. 2007;38(2):431–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Lyden PD, Zivin JA, Soll M, Sitzer M, Rothrock JF, Alksne J. Intracerebral hemorrhage after experimental embolic infarction. Anticoagulation. Arch Neurol. 1987;44(8):848–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl. 2011;111:63–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A. Plasminogen potentiates thrombin cytotoxicity and contributes to pathology of intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2008;28(3):506–15.PubMedCrossRefGoogle Scholar
  17. 17.
    You H, Al-Shahi R. Haemostatic drug therapies for acute primary intracerebral haemorrhage. Cochrane Database Syst Rev. 2006;3:CD005951.PubMedGoogle Scholar
  18. 18.
    Lwaleed BA, Goyal A, Delves GH, Cooper AJ. Seminal hemostatic factors: then and now. Semin Thromb Hemost. 2007;33(1):3–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoots WK. Challenges in the therapeutic use of a “so-called” universal hemostatic agent: recombinant factor VIIa. Hematol Am Soc Hematol Educ Program. See 2006;426–31.
  20. 20.
    Hedner U, Lee CA. First 20 years with recombinant FVIIa (NovoSeven). Haemophilia. 2011;17(1):e172–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Traynelis SF, Trejo J. Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol. 2007;14(3):230–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3(8):1800–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Soh UJ, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol. 2010;160(2):191–203.PubMedCrossRefGoogle Scholar
  24. 24.
    Katsuki H. Exploring neuroprotective drug therapies for intracerebral hemorrhage. J Pharmacol Sci. 2010;114(4):366–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86(2):272–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen B, Cheng Q, Yang K, Lyden PD. Thrombin mediates severe neurovascular injury during ischemia. Stroke. 2010;41(10):2348–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Blood-brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.PubMedGoogle Scholar
  30. 30.
    Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care. 2005;3(1):77–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoll G, Schroeter M, Jander S, Siebert H, Wollrath A, Kleinschnitz C, et al. Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages. Brain Pathol. 2004;14(1):51–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2000;20(1):53–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40(2):140–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Banno M, Mizuno T, Kato H, Zhang G, Kawanokuchi J, Wang J, et al. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology. 2005;48(2):283–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Min KJ, Yang MS, Kim SU, Jou I, Joe EH. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci. 2006;26(6):1880–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Tsirka SE. Tuftsin fragment 1–3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke. 2005;36(3):613–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann Neurol. 2003;54(5):655–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem. 2007;102(3):900–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Joice SL, Mydeen F, Couraud PO, Weksler BB, Romero IA, Fraser PA, et al. Modulation of blood-brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res. 2009;1298:13–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19(8):819–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 2002;22(12):1399–419.PubMedCrossRefGoogle Scholar
  44. 44.
    Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27(3):268–79.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang D, Hu X, Qian L, Wilson B, Lee C, Flood P, et al. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol Appl Pharmacol. 2009;238(1):64–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Burger D, Dayer JM. Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann N Y Acad Sci. 2002;966:464–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery. 2006;58(3):542–50; discussion 50.Google Scholar
  48. 48.
    Mayne M, Ni W, Yan HJ, Xue M, Johnston JB, Del Bigio MR, et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke. 2001;32(1):240–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke. 2001;32(1):162–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Lapchak PA. Tumor necrosis factor-alpha is involved in thrombolytic-induced hemorrhage following embolic strokes in rabbits. Brain Res. 2007;1167:123–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Eigler A, Sinha B, Hartmann G, Endres S. Taming TNF: strategies to restrain this proinflammatory cytokine. Immunol Today. 1997;18(10):487–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Feuerstein G, Wang X, Barone FC. Cytokines in brain ischemia—the role of TNF alpha. Cell Mol Neurobiol. 1998;18(6):695–701.PubMedCrossRefGoogle Scholar
  53. 53.
    Wagner KR, Beiler S, Beiler C, Kirkman J, Casey K, Robinson T, et al. Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:177–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2006;26(2):230–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, et al. Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:59–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2006;26(6):811–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5(8):629–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun. 2003;17(3):152–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF, et al. Overexpression of interleukin-1 receptor antagonist reduces brain edema induced by intracerebral hemorrhage and thrombin. Acta Neurochir Suppl. 2003;86:463–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg. 2001;95(4):680–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005;39(1):51–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Jian Liu K, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005;39(1):71–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.PubMedCrossRefGoogle Scholar
  64. 64.
    Kutty RK, Maines MD. Purification and characterization of biliverdin reductase from rat liver. J Biol Chem. 1981;256(8):3956–62.PubMedGoogle Scholar
  65. 65.
    Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Nakamura T, Xi G, Park JW, Hua Y, Hoff JT, Keep RF. Holo-transferrin and thrombin can interact to cause brain damage. Stroke. 2005;36(2):348–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Sadrzadeh SM, Anderson DK, Panter SS, Hallaway PE, Eaton JW. Hemoglobin potentiates central nervous system damage. J Clin Invest. 1987;79(2):662–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Sadrzadeh SM, Eaton JW. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest. 1988;82(5):1510–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Juranek I, Bezek S. Controversy of free radical hypothesis: reactive oxygen species—cause or consequence of tissue injury? Gen Physiol Biophys. 2005;24(3):263–78.PubMedGoogle Scholar
  72. 72.
    Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell Mol Neurobiol. 1998;18(6):667–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320(6):365–76.PubMedCrossRefGoogle Scholar
  74. 74.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297(5584):1186–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21(2):163–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Huang CY, Fujimura M, Chang YY, Chan PH. Overexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice. Stroke. 2001;32(3):741–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Wenk J, Brenneisen P, Wlaschek M, Poswig A, Briviba K, Oberley TD, et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem. 1999;274(36):25869–76.PubMedCrossRefGoogle Scholar
  78. 78.
    Gurjar MV, Deleon J, Sharma RV, Bhalla RC. Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am J Physiol Heart Circ Physiol. 2001;281(6):H2568–74.PubMedGoogle Scholar
  79. 79.
    Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21(12):1393–400.PubMedCrossRefGoogle Scholar
  80. 80.
    Chan PH, Schmidley JW, Fishman RA, Longar SM. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology. 1984;34(3):315–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Kim GW, Lewen A, Copin J, Watson BD, Chan PH. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience. 2001;105(4):1007–18.PubMedCrossRefGoogle Scholar
  82. 82.
    Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med. 1999;222(3):236–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Nakashima M, Niwa M, Iwai T, Uematsu T. Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic Biol Med. 1999;26(5–6):722–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radic Biol Med. 2005;39(7):841–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Lapchak PA, Araujo DM. Development of the nitrone-based spin trap agent NXY-059 to treat acute ischemic stroke. CNS Drug Rev. 2003;9(3):253–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Siesjo BK, Katsura K, Zhao Q, Folbergrova J, Pahlmark K, Siesjo P, et al. Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis. J Neurotrauma. 1995;12(5):943–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Siesjo BK, Siesjo P. Mechanisms of secondary brain injury. Eur J Anaesthesiol. 1996;13(3):247–68.PubMedCrossRefGoogle Scholar
  88. 88.
    Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T, et al. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke. 2008;39(2):463–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.CrossRefGoogle Scholar
  90. 90.
    Yoshifumi T, editor. Benefits of Pre-treatment with edaravone in tPA intravenous therapy for acute cerebral infarction. In: XXIIIrd international symposium on cerebral blood flow (abstract); 2007; Suppl 1, BP34–06M.Google Scholar
  91. 91.
    Wang J, Zhuang H, Dore S. Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis. 2006;22(3):473–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Gong Y, Tian H, Xi G, Keep RF, Hoff JT, Hua Y. Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta Neurochir Suppl. 2006;96:232–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Koeppen AH, Dickson AC, Smith J. Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol. 2004;63(6):587–97.PubMedGoogle Scholar
  94. 94.
    Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, et al. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol (Noisy-le-Grand). 2000;46(3):597–608.Google Scholar
  95. 95.
    Wan S, Hua Y, Keep RF, Hoff JT, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMedCrossRefGoogle Scholar
  96. 96.
    Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, et al. Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma. 2010;27(3):627–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39(3):279–91.PubMedCrossRefGoogle Scholar
  98. 98.
    Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedCrossRefGoogle Scholar
  99. 99.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18(5):1135–49.PubMedGoogle Scholar
  100. 100.
    Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997;378(3–4):151–60.PubMedGoogle Scholar
  101. 101.
    Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Mun-Bryce S, Wilkerson A, Pacheco B, Zhang T, Rai S, Wang Y, et al. Depressed cortical excitability and elevated matrix metalloproteinases in remote brain regions following intracerebral hemorrhage. Brain Res. 2004;1026(2):227–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997;48(4):921–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, et al. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24(10):1133–45.PubMedCrossRefGoogle Scholar
  105. 105.
    Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128(Pt 7):1622–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabin J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg. 2003;99(1):65–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. 2004;35(6):1316–22.PubMedCrossRefGoogle Scholar
  108. 108.
    Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Davalos A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36(1):86–91.PubMedCrossRefGoogle Scholar
  109. 109.
    Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8(2):205–16.PubMedCrossRefGoogle Scholar
  110. 110.
    Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 2001;893(1–2):104–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain. 2001;124(Pt 9):1734–42.PubMedCrossRefGoogle Scholar
  112. 112.
    McGeehan GM, Becherer JD, Bast Jr RC, Boyer CM, Champion B, Connolly KM, et al. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994;370(6490):558–61.PubMedCrossRefGoogle Scholar
  113. 113.
    Zask A, Levin JI, Killar LM, Skotnicki JS. Inhibition of matrix metalloproteinases: structure based design. Curr Pharm Des. 1996;2:624–61.Google Scholar
  114. 114.
    Yamamoto M, Hirayama R, Naruse K, Yoshino K, Shimada A, Inoue S, et al. Structure-activity relationship of hydroxamate-based inhibitors on membrane-bound Fas ligand and TNF-alpha processing. Drug Des Discov. 1999;16(2):119–30.PubMedGoogle Scholar
  115. 115.
    Black RA, Durie FH, Otten-Evans C, Miller R, Slack JL, Lynch DH, et al. Relaxed specificity of matrix metalloproteinases (MMPS) and TIMP insensitivity of tumor necrosis factor-alpha (TNF-alpha) production suggest the major TNF-alpha converting enzyme is not an MMP. Biochem Biophys Res Commun. 1996;225(2):400–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Cherney RJ, Wang L, Meyer DT, Xue CB, Arner EC, Copeland RA, et al. Macrocyclic hydroxamate inhibitors of matrix metalloproteinases and TNF-alpha production. Bioorg Med Chem Lett. 1999;9(9):1279–84.PubMedCrossRefGoogle Scholar
  117. 117.
    Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med. 1985;162(6):2163–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab. 1998;18(11):1163–72.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenberg GA. Matrix metalloproteinases in brain injury. J Neurotrauma. 1995;12(5):833–42.PubMedCrossRefGoogle Scholar
  120. 120.
    Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 1998;29(5):1020–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, et al. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994;370(6490):555–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Corbel M, Lanchou J, Germain N, Malledant Y, Boichot E, Lagente V. Modulation of airway remodeling-associated mediators by the antifibrotic compound, pirfenidone, and the matrix metalloproteinase inhibitor, batimastat, during acute lung injury in mice. Eur J Pharmacol. 2001;426(1–2):113–21.PubMedCrossRefGoogle Scholar
  123. 123.
    Falk V, Soccal PM, Grunenfelder J, Hoyt G, Walther T, Robbins RC. Regulation of matrix metalloproteinases and effect of MMP-inhibition in heart transplant related reperfusion injury. Eur J Cardiothorac Surg. 2002;22(1):53–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Santucci MB, Ciaramella A, Mattei M, Sumerska T, Fraziano M. Batimastat reduces Mycobacterium tuberculosis-induced apoptosis in macrophages. Int Immunopharmacol. 2003;3(12):1657–65.PubMedCrossRefGoogle Scholar
  125. 125.
    Beck G, Bottomley G, Bradshaw D, Brewster M, Broadhurst M, Devos R, et al. (E)-2(R)-[1(S)-(Hydroxycarbamoyl)-4-phenyl-3-butenyl]-2′-isobutyl-2′-(meth anesulfonyl)-4-methylvalerohydrazide (Ro 32-7315), a selective and orally active inhibitor of tumor necrosis factor-alpha convertase. J Pharmacol Exp Ther. 2002;302(1):390–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, et al. Inhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol. 2004;65(4):890–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000;31(12):3034–40.PubMedCrossRefGoogle Scholar
  128. 128.
    Araujo DM, Lapchak PA, editors. Tumor necrosis factor is involved in behavioral deficits, infarct progression and hemorrhage following ischemic strokes: a potential therapeutic target. Washington: SFN; 2004.Google Scholar
  129. 129.
    Guo ZD, Zhang XD, Wu HT, Lin B, Sun XC, Zhang JH. Matrix metalloproteinase 9 inhibition reduces early brain injury in cortex after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):81–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Guo ZD, Sun XC, Zhang JH. Mechanisms of early brain injury after SAH: matrix metalloproteinase 9. Acta Neurochir Suppl. 2011;110(Pt 1):63–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003;34(9):2165–70.PubMedCrossRefGoogle Scholar
  132. 132.
    Horstmann S, Su Y, Koziol J, Meyding-Lamade U, Nagel S, Wagner S. MMP-2 and MMP-9 levels in peripheral blood after subarachnoid hemorrhage. J Neurol Sci. 2006;251(1–2):82–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Todor DR, Lewis I, Bruno G, Chyatte D. Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke. 1998;29(8):1580–3.PubMedCrossRefGoogle Scholar
  134. 134.
    Fujimura M, Watanabe M, Shimizu H, Tominaga T. Expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) in cerebral cavernous malformations: immunohistochemical analysis of MMP-2, -9 and TIMP-2. Acta Neurochir (Wien). 2007;149(2):179–83.CrossRefGoogle Scholar
  135. 135.
    Chen CH, Manaenko A, Zhan Y, Liu WW, Ostrowki RP, Tang J, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience. 2010;169(1):402–14.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang QL, Du JB, Tang CS. Hydrogen and oxidative stress injury—from an inert gas to a medical gas. Beijing Da Xue Xue Bao. 2011;43(2):315–9.PubMedGoogle Scholar
  137. 137.
    Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009;31(2):114–21.PubMedCrossRefGoogle Scholar
  138. 138.
    Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage. Acta Neurochir Suppl. 2006;96:188–93.PubMedCrossRefGoogle Scholar
  139. 139.
    Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37(5):1314–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Qin Z, Hua Y, Liu W, Silbergleit R, He Y, Keep RF, et al. Hyperbaric oxygen preconditioning activates ribosomal protein S6 kinases and reduces brain swelling after intracerebral hemorrhage. Acta Neurochir Suppl. 2008;102:317–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang JH, Lo T, Mychaskiw G, Colohan A. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology. 2005;12(1):63–77.PubMedCrossRefGoogle Scholar
  143. 143.
    Sun L, Zhou W, Mueller C, Sommer C, Heiland S, Bauer AT, et al. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(9):1651–60.PubMedCrossRefGoogle Scholar
  144. 144.
    Huang ZX, Kang ZM, Gu GJ, Peng GN, Yun L, Tao HY, et al. Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia. Brain Res. 2007;1153:204–13.PubMedCrossRefGoogle Scholar
  145. 145.
    Fujiwara N, Mandeville ET, Geng X, Luo Y, Arai K, Wang X, et al. Effect of normobaric oxygen therapy in a rat model of intracerebral hemorrhage. Stroke. 2011;42(5):1469–72.PubMedCrossRefGoogle Scholar
  146. 146.
    Fujiwara N, Murata Y, Arai K, Egi Y, Lu J, Wu O, et al. Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic stroke. BMC Neurosci. 2009;10:79.PubMedCrossRefGoogle Scholar
  147. 147.
    Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005;36(4):797–802.PubMedCrossRefGoogle Scholar
  148. 148.
    Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010;7:74.PubMedCrossRefGoogle Scholar
  149. 149.
    Froehler MT, Ovbiagele B. Therapeutic hypothermia for acute ischemic stroke. Expert Rev Cardiovasc Ther. 2010;8(4):593–603.PubMedCrossRefGoogle Scholar
  150. 150.
    van der Worp HB, Macleod MR, Kollmar R. Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials? J Cereb Blood Flow Metab. 2010;30(6):1079–93.PubMedCrossRefGoogle Scholar
  151. 151.
    Liu L, Yenari MA. Clinical application of therapeutic hypothermia in stroke. Neurol Res. 2009;31(4):331–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Lyden PD, Krieger D, Yenari M, Dietrich WD. Therapeutic hypothermia for acute stroke. Int J Stroke. 2006;1(1):9–19.PubMedCrossRefGoogle Scholar
  153. 153.
    Kollmar R, Blank T, Han JL, Georgiadis D, Schwab S. Different degrees of hypothermia after experimental stroke: short- and long-term outcome. Stroke. 2007;38(5):1585–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Yenari M, Kitagawa K, Lyden P, Perez-Pinzon M. Metabolic downregulation: a key to successful neuroprotection? Stroke. 2008;39(10):2910–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Lee SM, Zhao H, Maier CM, Steinberg GK. The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. J Cereb Blood Flow Metab. 2009;29(9):1589–600.PubMedCrossRefGoogle Scholar
  156. 156.
    Liu L, Kim JY, Koike MA, Yoon YJ, Tang XN, Ma H, et al. FasL shedding is reduced by hypothermia in experimental stroke. J Neurochem. 2008;106(2):541–50.PubMedCrossRefGoogle Scholar
  157. 157.
    MacLellan CL, Davies LM, Fingas MS, Colbourne F. The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke. 2006;37(5):1266–70.PubMedCrossRefGoogle Scholar
  158. 158.
    Kawanishi M, Kawai N, Nakamura T, Luo C, Tamiya T, Nagao S. Effect of delayed mild brain hypothermia on edema formation after intracerebral hemorrhage in rats. J Stroke Cerebrovasc Dis. 2008;17(4):187–95.PubMedCrossRefGoogle Scholar
  159. 159.
    Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke. 2010;41(10):2265–70.PubMedCrossRefGoogle Scholar
  160. 160.
    Lapchak PA. Emerging therapies: pleiotropic multi-target drugs to treat stroke victims. Transl Stroke Res. 2011;2(2):129–35.PubMedCrossRefGoogle Scholar
  161. 161.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Zhao BQ, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007;38(2 Suppl):748–52.PubMedCrossRefGoogle Scholar
  163. 163.
    White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179(1–2):1–33.PubMedCrossRefGoogle Scholar
  164. 164.
    Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.PubMedCrossRefGoogle Scholar
  165. 165.
    Lapchak PA. Neuroprotective and neurotrophic curcuminoids to treat stroke: a translational perspective. Expert Opin Investig Drugs. 2011;20(1):13–22.PubMedCrossRefGoogle Scholar
  166. 166.
    Christopher D, d’Esterre KMT, Aviv RI, Eisert W, Lee T-Y. Dipyridamole treatment prior to stroke onset: examining post-stroke cerebral circulation and outcome in rabbits. Transl Stroke Res. 2011;2(2):186–94. doi: 10.1007/s12975-010-0062-0.CrossRefGoogle Scholar
  167. 167.
    Fisher M. New approaches to neuroprotective drug development. Stroke. 2011;42(1 Suppl):S24–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6(1):11.PubMedCrossRefGoogle Scholar
  169. 169.
    Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Pinto A, et al. Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem. 2009;9(14):1317–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of NeurologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations