Skip to main content

Neuroglobin: A Novel Target for Endogenous Neuroprotection

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

Augmentation of endogenous protective mechanisms has been thought to be promising strategies to develop new therapies against stroke. Neuroglobin (Ngb) is a tissue oxygen-binding globin that is highly and specifically expressed in brain neurons. Accumulating evidences have proved Ngb is a unique endogenous neuroprotective molecule against hypoxic/ischemic insults in cultured neurons and in stroke animals, which strongly suggest that development of pharmacological strategies that upregulate endogenous Ngb expression may lead to a novel therapeutic approach for stroke intervention. In this chapter, recent experimental findings from our laboratory and others in understanding Ngb’s biological function, gene expression regulation, and neuroprotective mechanisms are summarized. We also propose strategies to identify small molecules that upregulate endogenous Ngb for neuroprotection against stroke and related neurological disorders. Briefly, the strategies comprise two translational features. First, we will establish both mouse and human Ngb gene activation reporter stable cell lines to ensure that only compounds capable of activating both mouse and human Ngb promoters will be selected for further testing. Second, validation is the key component of any single step in drug screening and therapeutic development processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burmester T, Weich B, Reinhardt S, Hankeln T. A vertebrate globin expressed in the brain. Nature. 2000;407:520–3.

    Article  PubMed  CAS  Google Scholar 

  2. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA. Ngb is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA. 2001;98:15306–11.

    Article  PubMed  CAS  Google Scholar 

  3. Peroni D, Negro A, Bahr M, Dietz GP. Intracellular delivery of Ngb using HIV-1 tat protein transduction domain fails to protect against oxygen and glucose deprivation. Neurosci Lett. 2007;421:110–4.

    Article  PubMed  CAS  Google Scholar 

  4. Hundahl C, Kelsen J, Kjaer K, Ronn LC, Weber RE, Geuens E, Hay-Schmidt A, Nyengaard JR. Does Ngb protect neurons from ischemic insult? A quantitative investigation of Ngb expression following transient mcao in spontaneously hypertensive rats. Brain Res. 2006;1085:19–27.

    Article  PubMed  CAS  Google Scholar 

  5. Wang X, Liu J, Zhu H, Tejima E, Tsuji K, Murata Y, Atochin DN, Huang PL, Zhang C, Lo EH. Effects of Ngb overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke. 2008;39:1869–74.

    Article  PubMed  CAS  Google Scholar 

  6. Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA. Ngb protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA. 2003;100:3497–500.

    Article  PubMed  CAS  Google Scholar 

  7. Reuss S, Saaler-Reinhardt S, Weich B, Wystub S, Reuss MH, Burmester T, Hankeln T. Expression analysis of Ngb mRNA in rodent tissues. Neuroscience. 2002;115:645–56.

    Article  PubMed  CAS  Google Scholar 

  8. Nienhaus K, Nienhaus GU. Searching for Ngb’s role in the brain. IUBMB Life. 2007;59:490–7.

    Article  PubMed  CAS  Google Scholar 

  9. Brunori M, Vallone B. A globin for the brain. FASEB J. 2006;20:2192–7.

    Article  PubMed  CAS  Google Scholar 

  10. Burmester T, Hankeln T. Ngb: a respiratory protein of the nervous system. News Physiol Sci. 2004;19:110–3.

    Article  PubMed  CAS  Google Scholar 

  11. Greenberg DA, Jin K, Khan AA. Ngb: an endogenous neuroprotectant. Curr Opin Pharmacol. 2008;8:20–4.

    Article  PubMed  CAS  Google Scholar 

  12. Giuffre A, Moschetti T, Vallone B, Brunori M. Is Ngb a signal transducer? IUBMB Life. 2008;60:410–3.

    Article  PubMed  CAS  Google Scholar 

  13. Brunori M, Vallone B. Ngb, seven years after. Cell Mol Life Sci. 2007;64:1259–68.

    Article  PubMed  CAS  Google Scholar 

  14. Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of Ngb protein in the mouse brain. Neurosci Lett. 2003;346:114–6.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang C, Wang C, Deng M, Li L, Wang H, Fan M, Xu W, Meng F, Qian L, He F. Full-length cDNA cloning of human Ngb and tissue expression of rat Ngb. Biochem Biophys Res Commun. 2002;290:1411–9.

    Article  PubMed  CAS  Google Scholar 

  16. Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, Moens L. A globin in the nucleus! J Biol Chem. 2003;278:30417–20.

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt M, Giessl A, Laufs T, Hankeln T, Wolfrum U, Burmester T. How does the eye breathe? Evidence for Ngb-mediated oxygen supply in the mammalian retina. J Biol Chem. 2003;278:1932–5.

    Article  PubMed  CAS  Google Scholar 

  18. Hundahl C, Stoltenberg M, Fago A, Weber RE, Dewilde S, Fordel E, Danscher G. Effects of short-term hypoxia on Ngb levels and localization in mouse brain tissues. Neuropathol Appl Neurobiol. 2005;31:610–7.

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt-Kastner R, Haberkamp M, Schmitz C, Hankeln T, Burmester T. Ngb mRNA expression after transient global brain ischemia and prolonged hypoxia in cell culture. Brain Res. 2006;1103:173–80.

    Article  PubMed  CAS  Google Scholar 

  20. Shao G, Gong KR, Li J, Xu XJ, Gao CY, Zeng XZ, Lu GW, Huo X. Antihypoxic effects of Ngb in hypoxia-preconditioned mice and SH-SY5Y cells. Neurosignals. 2009;17:196–202.

    Article  PubMed  CAS  Google Scholar 

  21. Shang A, Zhou D, Wang L, Gao Y, Fan M, Wang X, Zhou R, Zhang C. Increased Ngb levels in the cerebral cortex and serum after ischemia-reperfusion insults. Brain Research. 2006;1078:219–26.

    Article  PubMed  CAS  Google Scholar 

  22. Fordel E, Thijs L, Moens L, Dewilde S. Ngb and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J. 2007;274:1312–7.

    Article  PubMed  CAS  Google Scholar 

  23. Lima DC, Cossa AC, Perosa SR, de Oliveira EM, da Silva JAJ, da Silva Fernandes MJ, et al. Ngb is up-regulated in the cerebellum of pups exposed to maternal epileptic seizures. Int J Dev Neurosci. 2011;29(8):891–7.

    Google Scholar 

  24. Jin K, Mao Y, Mao X, Xie L, Greenberg DA. Ngb expression in ischemic stroke. Stroke. 2010;41:557–9.

    Article  PubMed  CAS  Google Scholar 

  25. Mammen PP, Shelton JM, Goetsch SC, Williams SC, Richardson JA, Garry MG, Garry DJ. Ngb, a novel member of the globin family, is expressed in focal regions of the brain. J Histochem Cytochem. 2002;50:1591–8.

    Article  PubMed  CAS  Google Scholar 

  26. Li RC, Lee SK, Pouranfar F, Brittian KR, Clair HB, Row BW, Wang Y, Gozal D. Hypoxia differentially regulates the expression of Ngb and cytoglobin in rat brain. Brain Res. 2006;1096:173–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sun Y, Jin K, Mao XO, Xie L, Peel A, Childs JT, Logvinova A, Wang X, Greenberg DA. Effect of aging on Ngb expression in rodent brain. Neurobiol Aging. 2005;26:275–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of Ngb and cytoglobin functions. Gene. 2007;398:114–22.

    Article  PubMed  CAS  Google Scholar 

  29. Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S, Ellerby LM, Jin K, Greenberg DA. Ngb-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci USA. 2006;103:17944–8.

    Article  PubMed  CAS  Google Scholar 

  30. Cai B, Lin Y, Xue XH, Fang L, Wang N, Wu ZY. Tat-mediated delivery of Ngb protects against focal cerebral ischemia in mice. Exp Neurol. 2011;227:224–31.

    Article  PubMed  CAS  Google Scholar 

  31. Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D. Ngb protects PC12 cells against beta-amyloid-induced cell injury. Neurobiol Aging. 2008;29:1815–22.

    Article  PubMed  CAS  Google Scholar 

  32. Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA. Ngb attenuates beta-amyloid neurotoxicity in vitro and transgenic alzheimer phenotype in vivo. Proc Natl Acad Sci USA. 2007;104:19114–9.

    Article  PubMed  CAS  Google Scholar 

  33. Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M. Human brain Ngb structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003;11:1087–95.

    Article  PubMed  CAS  Google Scholar 

  34. Vallone B, Nienhaus K, Brunori M, Nienhaus GU. The structure of murine Ngb: novel pathways for ligand migration and binding. Proteins. 2004;56:85–92.

    Article  PubMed  CAS  Google Scholar 

  35. Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M. The human brain hexacoordinated Ngb three-dimensional structure. Micron. 2004;35:63–5.

    Article  PubMed  CAS  Google Scholar 

  36. Kriegl JM, Bhattacharyya AJ, Nienhaus K, Deng P, Minkow O, Nienhaus GU. Ligand binding and protein dynamics in Ngb. Proc Natl Acad Sci USA. 2002;99:7992–7.

    Article  PubMed  CAS  Google Scholar 

  37. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE. Allosteric regulation and temperature dependence of oxygen binding in human Ngb and cytoglobin. Molecular mechanisms and physiological significance. J Biol Chem. 2004;279:44417–26.

    Article  PubMed  CAS  Google Scholar 

  38. Van Doorslaer S, Dewilde S, Kiger L, Nistor SV, Goovaerts E, Marden MC, Moens L. Nitric oxide binding properties of Ngb. A characterization by EPR and flash photolysis. J Biol Chem. 2003;278:4919–25.

    Article  PubMed  CAS  Google Scholar 

  39. Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Ngb in the rat brain (ii): co-localisation with neurotransmitters. Neuroendocrinology. 2008;88:183–98.

    Article  PubMed  CAS  Google Scholar 

  40. Brunori M, Giuffre A, Nienhaus K, Nienhaus GU, Scandurra FM, Vallone B. Ngb, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci USA. 2005;102:8483–8.

    Article  PubMed  CAS  Google Scholar 

  41. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002;3:214–20.

    Article  PubMed  CAS  Google Scholar 

  42. Brunori M, Giuffre A, Forte E, Mastronicola D, Barone MC, Sarti P. Control of cytochrome c oxidase activity by nitric oxide. Biochim Biophys Acta. 2004;1655:365–71.

    Article  PubMed  CAS  Google Scholar 

  43. Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT. Human Ngb functions as a redox-regulated nitrite reductase. J Biol Chem. 2011;286:18277–89.

    Article  PubMed  CAS  Google Scholar 

  44. Jin K, Mao XO, Xie L, Khan AA, Greenberg DA. Ngb protects against nitric oxide toxicity. Neurosci Lett. 2008;430:135–7.

    Article  PubMed  CAS  Google Scholar 

  45. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D, Moens L, Dewilde S. Ngb and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett. 2006;410:146–51.

    Article  PubMed  CAS  Google Scholar 

  46. Wakasugi K, Nakano T, Morishima I. Oxidized human Ngb acts as a heterotrimeric galpha protein guanine nucleotide dissociation inhibitor. J Biol Chem. 2003;278:36505–12.

    Article  PubMed  CAS  Google Scholar 

  47. Schwindinger WF, Robishaw JD. Heterotrimeric g-protein betagamma-dimers in growth and differentiation. Oncogene. 2001;20:1653–60.

    Article  PubMed  CAS  Google Scholar 

  48. Kitatsuji C, Kurogochi M, Nishimura S, Ishimori K, Wakasugi K. Molecular basis of guanine nucleotide dissociation inhibitor activity of human Ngb by chemical cross-linking and mass spectrometry. J Mol Biol. 2007;368:150–60.

    Article  PubMed  CAS  Google Scholar 

  49. Watanabe S, Wakasugi K. Neuroprotective function of human Ngb is correlated with its guanine nucleotide dissociation inhibitor activity. Biochem Biophys Res Commun. 2008;369:695–700.

    Article  PubMed  CAS  Google Scholar 

  50. Khan AA, Mao XO, Banwait S, DerMardirossian CM, Bokoch GM, Jin K, Greenberg DA. Regulation of hypoxic neuronal death signaling by Ngb. FASEB J. 2008;22:1737–47.

    Article  PubMed  CAS  Google Scholar 

  51. Wakasugi K, Nakano T, Kitatsuji C, Morishima I. Human Ngb interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem Biophys Res Commun. 2004;318:453–60.

    Article  PubMed  CAS  Google Scholar 

  52. Wakasugi K, Nakano T, Morishima I. Association of human Ngb with cystatin c, a cysteine proteinase inhibitor. Biochemistry. 2004;43:5119–25.

    Article  PubMed  CAS  Google Scholar 

  53. Giuffre A, Moschetti T, Vallone B, Brunori M. Ngb: enzymatic reduction and oxygen affinity. Biochem Biophys Res Commun. 2008;367:893–8.

    Article  PubMed  CAS  Google Scholar 

  54. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 2006;16:264–72.

    Article  PubMed  CAS  Google Scholar 

  55. Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T. The reaction of Ngb with potential redox protein partners cytochrome b5 and cytochrome c. FEBS Lett. 2006;580:4884–8.

    Article  PubMed  CAS  Google Scholar 

  56. Yu Z, Liu J, Guo S, Xing C, Fan X, Ning M, Yuan JC, Lo EH, Wang X. Ngb-overexpression alters hypoxic response gene expression in primary neuron culture following oxygen glucose deprivation. Neuroscience. 2009;162:396–403.

    Article  PubMed  CAS  Google Scholar 

  57. Chen LM, Xiong YS, Kong FL, Qu M, Wang Q, Chen XQ, et al. Ngb attenuates Alzheimer-like tau hyperphosphorylation by activating akt signaling. J Neurochem. 2012;120(1):157–64.

    Google Scholar 

  58. Burmester T, Gerlach F, Hankeln T. Regulation and role of Ngb and cytoglobin under hypoxia. Adv Exp Med Biol. 2007;618:169–80.

    Article  PubMed  Google Scholar 

  59. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80:315–60.

    PubMed  CAS  Google Scholar 

  60. Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int. 2002;40:511–26.

    Article  PubMed  CAS  Google Scholar 

  61. Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D. Ngb protects PC12 cells against beta-amyloid-induced cell injury. Neurobiol Aging. 2007;29:1815–22.

    Article  PubMed  CAS  Google Scholar 

  62. Liu J, Yu Z, Guo S, Lee SR, Xing C, Zhang C, Gao Y, Nicholls DG, Lo EH, Wang X. Effects of Ngb overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res. 2009;87:164–70.

    Article  PubMed  CAS  Google Scholar 

  63. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, Gonzalez M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol. 2005;31:105–16.

    Article  PubMed  CAS  Google Scholar 

  64. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.

    Article  PubMed  CAS  Google Scholar 

  65. Perez-Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase c in ischemic tolerance in the brain. Antioxid Redox Signal. 2005;7:1150–7.

    Article  PubMed  CAS  Google Scholar 

  66. Larsen GA, Skjellegrind HK, Berg-Johnsen J, Moe MC, Vinje ML. Depolarization of mitochondria in isolated ca1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity. Brain Res. 2006;1077:153–60.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, Friedlander RM. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke. 2008;39:455–62.

    Article  PubMed  Google Scholar 

  68. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417:74–8.

    Article  PubMed  CAS  Google Scholar 

  69. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 1996;184:1331–41.

    Article  PubMed  CAS  Google Scholar 

  70. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 1998;426:111–6.

    Article  PubMed  CAS  Google Scholar 

  71. Sun J, Trumpower BL. Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys. 2003;419:198–206.

    Article  PubMed  CAS  Google Scholar 

  72. Berry EA, Guergova-Kuras M, Huang LS, Crofts AR. Structure and function of cytochrome bc complexes. Annu Rev Biochem. 2000;69:1005–75.

    Article  PubMed  CAS  Google Scholar 

  73. Hunte C, Palsdottir H, Trumpower BL. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett. 2003;545:39–46.

    Article  PubMed  CAS  Google Scholar 

  74. Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15:660–6.

    Article  PubMed  CAS  Google Scholar 

  75. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–8.

    Article  PubMed  CAS  Google Scholar 

  76. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1:409–14.

    Article  PubMed  CAS  Google Scholar 

  77. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science. 1998;281:64–71.

    Article  PubMed  CAS  Google Scholar 

  78. Madesh M, Hajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol. 2001;155:1003–15.

    Article  PubMed  CAS  Google Scholar 

  79. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW. Bcl-XL inhibits membrane permeabilization by competing with BAX. PLoS Biol. 2008;6:e147.

    Article  PubMed  CAS  Google Scholar 

  80. Ma TC, Campana A, Lange PS, Lee HH, Banerjee K, Bryson JB, Mahishi L, Alam S, Giger RJ, Barnes S, Morris Jr SM, Willis DE, Twiss JL, Filbin MT, Ratan RR. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a camp-independent pathway. J Neurosci. 2010;30:739–48.

    Article  PubMed  CAS  Google Scholar 

  81. Smirnova NA, Rakhman I, Moroz N, Basso M, Payappilly J, Kazakov S, Hernandez-Guzman F, Gaisina IN, Kozikowski AP, Ratan RR, Gazaryan IG. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. Chem Biol. 2010;17:380–91.

    Article  PubMed  CAS  Google Scholar 

  82. Smirnova NA, Haskew-Layton RE, Basso M, Hushpulian DM, Payappilly JB, Speer RE, Ahn YH, Rakhman I, Cole PA, Pinto JT, Ratan RR, Gazaryan IG. Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chem Biol. 2011;18:752–65.

    Article  PubMed  CAS  Google Scholar 

  83. Manuvakhova MS, Johnson GG, White MC, Ananthan S, Sosa M, Maddox C, McKellip S, Rasmussen L, Wennerberg K, Hobrath JV, White EL, Maddry JA, Grimaldi M. Identification of novel small molecule activators of nuclear factor-κb with neuroprotective action via high-throughput screening. J Neurosci Res. 2011;89:58–72.

    Article  PubMed  CAS  Google Scholar 

  84. Signore AP, Zhang F, Weng Z, Gao Y, Chen J. Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. J Neurochem. 2008;106:1977–90.

    Article  PubMed  CAS  Google Scholar 

  85. Ehrenreich H, Aust C, Krampe H, Jahn H, Jacob S, Herrmann M, Sirén AL. Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis. 2004;19:195–206.

    Article  PubMed  CAS  Google Scholar 

  86. Garry DJ, Mammen PP. Neuroprotection and the role of Ngb. Lancet. 2003;362:342–3.

    Article  PubMed  Google Scholar 

  87. Jin K, Mao XO, Xie L, John V, Greenberg DA. Pharmacological induction of Ngb expression. Pharmacology. 2011;87:81–4.

    Article  PubMed  CAS  Google Scholar 

  88. De Marinis E, Ascenzi P, Pellegrini M, Galluzzo P, Bulzomi P, Arevalo MA, Garcia-Segura LM, Marino M. 17β-estradiol—a new modulator of Ngb levels in neurons: role in neuroprotection against H2O2-induced toxicity. Neurosignals. 2010;18:223–35.

    Article  PubMed  CAS  Google Scholar 

  89. Gao Y, Mengana Y, Cruz YR, Muñoz A, Testé IS, García JD, Wu Y, Rodríguez JC, Zhang C. Different expression patterns of ngb and epor in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of neuro-epo for ischemic insults to the gerbil brain. J Histochem Cytochem. 2011;59:214–27.

    Article  PubMed  CAS  Google Scholar 

  90. Sittampalam GS, Kahl SD, Janzen WP. High-throughput screening: advances in assay technologies. Curr Opin Chem Biol. 1997;1:384–91.

    Article  PubMed  CAS  Google Scholar 

  91. Landro JA, Taylor IC, Stirtan WG, Osterman DG, Kristie J, Hunnicutt EJ, Rae PM, Sweetnam PM. HTS in the new millennium: the role of pharmacology and flexibility. J Pharmacol Toxicol Methods. 2000;44:273–89.

    Article  PubMed  CAS  Google Scholar 

  92. Jarecki J, Chen X, Bernardino A, Coovert DD, Whitney M, Burghes A, Stack J, Pollok BA. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet. 2005;14:2003–18.

    Article  PubMed  CAS  Google Scholar 

  93. Croston GE. Functional cell-based uHTS in chemical genomic drug discovery. Trends Biotechnol. 2002;20:110–5.

    Article  PubMed  CAS  Google Scholar 

  94. Gray MJ, Poljakovic M, Kepka-Lenhart D, Morris Jr SM. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene. 2005;353:98–106.

    Article  PubMed  CAS  Google Scholar 

  95. Echaniz-Laguna A, Miniou P, Bartholdi D, Melki J. The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements. Am J Hum Genet. 1999;64:1365–70.

    Article  PubMed  CAS  Google Scholar 

  96. DiDonato CJ, Brun T, Simard LR. Complete nucleotide sequence, genomic organization, and promoter analysis of the murine survival motor neuron gene (SMN). Mamm Genome. 1999;10:638–41.

    Article  PubMed  CAS  Google Scholar 

  97. Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AH, Jacob ST. Identification of a novel cyclic amp-response element (CRE-II) and the role of CREB-1 in the camp-induced expression of the survival motor neuron (SMN) gene. J Biol Chem. 2004;279:14803–11.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang W, Tian Z, Sha S, Cheng LY, Philipsen S, Tan-Un KC. Functional and sequence analysis of human Ngb gene promoter region. Biochim Biophys Acta. 2011;1809:236–44.

    Article  PubMed  CAS  Google Scholar 

  99. Bialkowska AB, Du Y, Fu H, Yang VW. Identification of novel small-molecule compounds that inhibit the proproliferative kruppel-like factor 5 in colorectal cancer cells by high-throughput screening. Mol Cancer Ther. 2009;8:563–70.

    Article  PubMed  CAS  Google Scholar 

  100. Zhu Y, Sun Y, Jin K, Greenberg DA. Hemin induces Ngb expression in neural cells. Blood. 2002;100:2494–8.

    Article  PubMed  CAS  Google Scholar 

  101. Agholme L, Lindstrom T, Kågedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 2010;20:1069–82.

    PubMed  CAS  Google Scholar 

  102. Sarang SS, Yoshida T, Cadet R, Valeras AS, Jensen RV, Gullans SR. Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays. Physiol Genomics. 2002;11:45–52.

    PubMed  CAS  Google Scholar 

  103. Bertsch U, Winklhofer K, Hirschberger T, Bieschke J, Weber P, Hartl FU, Tavan P, Tatzelt J, Kretzschmar HA, Giese A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol. 2005;79:7785–91.

    Article  PubMed  CAS  Google Scholar 

  104. Iljin K, Ketola K, Vainio P, Halonen P, Kohonen P, Fey V, Grafström RC, Perälä M, Kallioniemi O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin Cancer Res. 2009;15:6070–8.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.

    Article  PubMed  Google Scholar 

  106. Papke RL. Estimation of both the potency and efficacy of alpha7 nAChR agonists from single-concentration responses. Life Sci. 2006;78:2812–9.

    Article  PubMed  CAS  Google Scholar 

  107. Berg EL, Hytopoulos E, Plavec I, Kunkel EJ. Approaches to the analysis of cell signaling networks and their application in drug discovery. Curr Opin Drug Discov Devel. 2005;8:107–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Wang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu, Z., Liu, N., Wang, X. (2012). Neuroglobin: A Novel Target for Endogenous Neuroprotection. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_18

Download citation

Publish with us

Policies and ethics