Skip to main content

Suprathreshold Auditory Processing in Noise-Induced Hearing Loss

  • Chapter
  • First Online:
Noise-Induced Hearing Loss

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 40))

  • 3104 Accesses

Abstract

This chapter reviews auditory processing changes that occur in individuals with sensorineural hearing loss due to noise exposure. The typical patient with noise-induced hearing loss (NIHL) initially presents with a high-frequency sensorineural hearing loss that spreads to other frequencies as the noise exposure continues. Studies on various animal models have shown that the configuration of hearing loss and subsequent recovery depend on the intensity, frequency, and duration of exposure (see Clark 1991 and Salvi and Boettcher 2008, for review). Briefly stated, the sensorineural hearing loss resulting from noise exposure seems to be restricted mostly to the frequency of exposure for low-intensity [83 dB sound pressure level (SPL), Salvi et al. 1978] stimulation, while high-intensity (95 dB SPL) stimulation results in hearing loss at frequencies one half to an octave above the exposure frequency. The half-octave shift has been well described in the seminal work of Davis et al. (1950). For long-term exposures, the amount of temporary threshold shift (TTS) typically increases linearly over the first 24 h of exposure and then plateaus to a level referred to as asymptotic threshold shift (ATS). Recovery after noise exposure is also dependent on the intensity and duration of exposure. Recovery tends to be slowest for audiometric frequencies around 4,000 Hz, regardless of what the frequency of exposure is (Davis et al. 1950). In general, small amounts of ATS due to low-intensity exposures are associated with faster recovery, whereas large amounts of ATS (greater than around 55 dB) due to high-intensity exposures are associated with slower recovery and in some cases, permanent threshold shifts (PTS; Clark 1991). As the auditory system sustains ATS for weeks and months, the amount of recovery at the eventual cessation of the exposure decreases. At the extreme, ATS is a good predictor of PTS for prolonged exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, S. M., Krever, E. M., & Alberti, P. W. (1990). Auditory detection, discrimination and speech processing in ageing, noise-sensitive and hearing-impaired listeners. Scandinavian Audiology, 19(1), 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Aizawa, N., & Eggermont, J. J. (2006). Effects of noise-induced hearing loss at young age on voice onset time and gap-in-noise representations in adult cat primary auditory cortex. Journal of the Association for Research in Otolaryngology, 7(1), 71–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke, K. S., & Creston, J. E. (1966). Recruitment in noise-induced hearing loss. Acta Oto-Laryngologica, 62(1–6), 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Buus, S., & Florentine, M. (2002). Growth of loudness in listeners with cochlear hearing losses: Recruitment reconsidered. Journal of the Association for Research in Otolaryngology, 3(2), 120–139.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cai, S., Ma, W. D., & Young, E. D. (2008). Encoding intensity in ventral cochlear nucleus following acoustic trauma: Implications for loudness recruitment. Journal of the Association for Research in Otolaryngology, 10, 5–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Committee on Hearing, Bioacoustics, and Biomechanics (CHABA). (1988). Speech understanding and aging. Journal of the Acoustical Society of America, 83, 859–895.

    Article  Google Scholar 

  • Clark, W. W. (1991). Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. Journal of the Acoustical Society of America, 90(1), 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Davis, H., Morgan, C. T., Hawkins, J. E., Galambos, R. & Smith, F. W. (1950). Final report on temporary deafness following exposure to loud tones and noise. Acta Oto-Laryngologica, 88(Supplement), 1–57.

    CAS  Google Scholar 

  • Ernst, S. M., Rennies, J., Kollmeier, B., & Verhey, J. L. (2010). Suppression and comodulation masking release in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 128(1), 300–309.

    Article  PubMed  Google Scholar 

  • Fitzgibbons, P. J., & Gordon-Salant, S. (1994). Age effects on measures of auditory duration discrimination. Journal of Speech and Hearing Research, 37(3), 662–670.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons, P. J., & Gordon-Salant, S. (1995). Age effects on duration discrimination with simple and complex stimuli. Journal of the Acoustical Society of America, 98(6), 3140–3145.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons, P. J., & Gordon-Salant, S. (2010). Behavioral studies with aging humans: Hearing sensitivity and psychoacoustics. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system (pp. 111–134). New York: Springer.

    Chapter  Google Scholar 

  • Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12, 47–65.

    Article  Google Scholar 

  • Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. Journal of the Acoustical Society of America, 5(2), 82–108.

    Article  Google Scholar 

  • Fowler, E. P. (1936). A method for the early detection of otosclerosis. Archives of Otolaryngology, 24, 731–741.

    Article  Google Scholar 

  • Giraudi, D. M., Salvi, R. J., Henderson, D., & Hamernik, R. P. (1980). Gap detection by the chinchilla. Journal of the Acoustical Society of America, 68(3), 802–806.

    Article  CAS  PubMed  Google Scholar 

  • Giraudi, D. M., Salvi, R. J., Henderson, D., & Hamernik, R. P. (1982). Gap detection in hearing-impaired chinchillas. Journal of the Acoustical Society of America, 72(5), 1387–1393.

    Article  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1995a). Comparing recognition of distorted speech using an equivalent signal-to-noise ratio index. Journal of Speech and Hearing Research, 38(3), 706–713.

    Article  CAS  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1995b). Recognition of multiply degraded speech by young and elderly listeners. Journal of Speech and Hearing Research, 38(5), 1150–1156.

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1997). Selected cognitive factors and speech recognition performance among young and elderly listeners. Journal of Speech, Language, and Hearing Research, 40(2), 423–431.

    CAS  PubMed  Google Scholar 

  • Green, D. M. (1988). Profile analysis: Auditory intensity discrimination. London: Oxford University Press.

    Google Scholar 

  • Green, D. M., Kidd, G., Jr., & Picardi, M. C. (1983). Successive versus simultaneous comparison in auditory intensity discrimination. Journal of the Acoustical Society of America, 73(2), 639–643.

    Article  CAS  PubMed  Google Scholar 

  • Grose, J. H., & Hall, J. W., III. (1994). Modulation detection interference (MDI) in listeners with cochlear hearing loss. Journal of Speech and Hearing Research, 37(3), 680–686.

    Article  CAS  PubMed  Google Scholar 

  • Grose, J. H., & Hall, J. W., III (1996). Cochlear hearing loss and the processing of modulation: Effects of temporal asynchrony. Journal of the Acoustical Society of America, 100(1), 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. W., & Grose, J. H. (1989). Spectro-temporal analysis and cochlear hearing impairment: Effects of frequency selectivity, temporal resolution, signal frequency, and rate of modulation. Journal of the Acoustical Society of America, 85(6), 2550–2562.

    Article  PubMed  Google Scholar 

  • Hall, J. W., III, Haggard, M. P., & Fernandes, M. A. (1984). Detection in noise by spectro-temporal analysis. Journal of the Acoustical Society of America, 76(1), 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. W., III, Davis, A. C., Haggard, M. P., & Pillsbury, H. C. (1988). Spectro-temporal analysis in normal-hearing and cochlear-impaired listeners. The Journal of the Acoustical Society of America, 84(4), 1325–1331.

    Article  PubMed  Google Scholar 

  • Hall, J. W., III, Grose, J. H., & Mendoza, L. (1996). Spectro-temporal processing in cochlear hearing-impaired listeners. In A. Axelsson, H. M. Borchgrevink, R. P. Hamernik, P. A. Hellstrom, D. Henderson, & R. J. Salvi (Eds.), Scientific basis of noise-induced hearing loss (pp. 243–251). New York: Thieme.

    Google Scholar 

  • Hall, J. W., III, Buss, E., & Grose, J. H. (2008). Spectral integration of speech bands in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 124(2), 1105–1115.

    Article  PubMed Central  PubMed  Google Scholar 

  • Heinz, M. G., Issa, J. B., & Young, E. D. (2005). Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. Journal of the Association for Research in Otolaryngology, 6, 91–105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Humes, L. E., & Christopherson, L. (1991). Speech identification difficulties of hearing-impaired elderly persons: The contributions of auditory processing deficits. Journal of Speech and Hearing Research, 34(3), 686–693.

    Article  CAS  PubMed  Google Scholar 

  • Humes, L. E., & Dubno, J. R. (2010). Factors affecting speech understanding in older adults. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system (pp. 211–257). New York: Springer.

    Chapter  Google Scholar 

  • Joris, P. X. (2009). Recruitment of Neurons and Loudness. Commentary on “Encoding intensity in ventral cochlear nucleus following acoustic trauma: Implications for loudness recruitment” by Cai et al. Journal of the Association for Research in Otolaryngology. doi: 10.1007/s10162-008-0142-y. Journal of the Association for Research in Otolaryngology, 10(1), 1–4. doi: 10.1007/s10162-009-0156-0.

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lentz, J. J., & Leek, M. R. (2002). Decision strategies of hearing-impaired listeners in spectral shape discrimination. Journal of the Acoustical Society of America, 111(3), 1389–1398.

    Article  PubMed  Google Scholar 

  • Lentz, J. J., & Leek, M. R. (2003). Spectral shape discrimination by hearing-impaired and normal-hearing listeners. Journal of the Acoustical Society of America, 113(3), 1604–1616.

    Article  PubMed  Google Scholar 

  • Litvak, L. M., Spahr, T., Saoji, A. A., & Fridman, G. Y. (2007). Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners. Journal of the Acoustical Society of America, 122(2), 982–991.

    Article  PubMed  Google Scholar 

  • May, B. J., Little, N., & Saylow, S. (2009). Loudness perception in the domestic cat: Reaction time estimates of equal loudness contours and recruitment effects. Journal of the Association for Research in Otolaryngology, 10(2), 295–308.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mills, J. H., Schulte B. A., Boettcher, F. A., & Dubno, J. R. (1998). A comparison of age-related hearing loss and noise-induced hearing loss. In D. Henderson, D. Prasher, R. Kopke, R. Salvi, & R. Hamernik (Eds.), Noise-induced hearing loss: Basic mechanisms, prevention and control (pp. 497–511). London: Noise Research Network Publications.

    Google Scholar 

  • Moody, D. B. (1970). Reaction time as an index of sensory function. In W. C. Stebbins (Ed.), Animal psychophysics: The design and conduct of sensory experiments (pp. 227–302). New York: Appleton.

    Google Scholar 

  • Moore, B. C. J. (1996). Effects of noise-induced hearing loss on temporal resolution. In A. Axelsson, H. M. Borchgrevink, R. P. Hamernik, P. A. Hellstrom, D. Henderson, & R. J. Salvi (Eds.), Scientific basis of noise-induced hearing loss (pp. 252–263). New York: Thieme.

    Google Scholar 

  • Moore, B. C. J. (1998). Cochlear hearing loss. London: Whurr.

    Google Scholar 

  • Moore, B. C. J. (2003). Frequency selectivity, masking, and the critical band. In An introduction to the psychology of hearing (5th ed., pp. 65–125). San Diego: Academic Press.

    Google Scholar 

  • Moore, B. C. J. (2004). Testing the concept of softness imperceptions: Loudness near threshold for hearing-impaired ears. Journal of the Acoustical Society of America, 115(6), 3103–3111.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Shailer, M. J., Hall, J. W., & Schooneveldt, G. P. (1993). Comodulation masking release in subjects with unilateral and bilateral hearing impairment. Journal of the Acoustical Society of America, 93(1), 435–451.

    Article  CAS  PubMed  Google Scholar 

  • Opie, J. M., & Bacon, S. P. (1993). Modulation detection interference in subjects with a mild high-frequency hearing loss. Journal of the Acoustical Society of America, 94(3), 1812.

    Article  Google Scholar 

  • Patterson, R. D., Nimmo-Smith, I., Weber, D. L., & Milroy, R. (1982). The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold. Journal of the Acoustical Society of America, 72(6), 1788–1803.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R. W., & Moore, B. C. (1992). Auditory filter shapes at low center frequencies in young and elderly hearing-impaired subjects. Journal of the Acoustical Society of America, 91(1), 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Pugh, J. E., Jr., Moody, D. B., & Anderson, D. J. (1979). Electrocochleography and experimentally induced loudness recruitment. Archives of Oto-Rhino-Laryngology, 224(3–4), 241–255.

    PubMed  Google Scholar 

  • Rawool, V. (2006). The effects of hearing loss on temporal processing. Hearing Review, 13(6), 42–46.

    Google Scholar 

  • Salvi, R., & Boettcher, F. A. (2008). Animal models of noise-induced hearing loss. In P. M. Conn (Ed.), Sourcebook of models for biomedical research (pp. 289–301). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Salvi, R. J., Hamernik, R. P., & Henderson, D. (1978). Discharge patterns in the cochlear nucleus of the chinchilla following noise-induced asymptotic threshold shift. Experimental Brain Research, 32(3), 301–320.

    Article  CAS  PubMed  Google Scholar 

  • Salvi, R. J., Hamernik, R. P., & Henderson, D. (1983). Response patterns of auditory nerve fibers during temporary threshold shift. Hearing Research, 10(1), 37–67.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, B. A., Pichora-Fuller, M. K., Kowalchuk, D., & Lamb, M. (1994). Gap detection and the precedence effect in young and old adults. Journal of the Acoustical Society of America, 95(2), 980–991.

    Article  CAS  PubMed  Google Scholar 

  • Schorn, K., & Zwicker, E. (1990). Frequency selectivity and temporal resolution in patients with various inner ear disorders. Audiology, 29(1), 8–20.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav, M. N., Humes, L. E., & Kewley-Port, D. (2006). Individual differences in auditory discrimination of spectral shape and speech-identification performance among elderly listeners. Journal of the Acoustical Society of America, 119(2), 1131–1142.

    Article  PubMed  Google Scholar 

  • Sommers, M. S., & Humes, L. E. (1993). Auditory filter shapes in normal-hearing, noise-masked normal, and elderly listeners. Journal of the Acoustical Society of America, 93(5), 2903–2914.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, M., Norena, A. J., & Eggermont, J. J. (2004). Effects of an acute acoustic trauma on the representation of a voice onset time continuum in cat primary auditory cortex. Hearing Research, 193(1–2), 39–50.

    Article  PubMed  Google Scholar 

  • Tyler, R. S. (1986). Frequency resolution in hearing-impaired listeners. In B. C. J. Moore (Ed.), Frequency selectivity in hearing (pp. 309–363). London: Academic Press.

    Google Scholar 

  • Tyler, R. S., Summerfield, Q., Wood, E. J., & Fernandes, M. A. (1982). Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. Journal of the Acoustical Society of America, 72(3), 740–752.

    Article  CAS  PubMed  Google Scholar 

  • Yost, W. A., & Sheft, S. (1989). Across-critical-band processing of amplitude-modulated tones. Journal of the Acoustical Society of America, 85(2), 848–857.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker, E., & Schorn, K. (1978). Psychoacoustical tuning curves in audiology. Audiology, 17(2), 120–140.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker, E., & Schorn, K. (1982). Temporal resolution in hard-of-hearing patients. Audiology, 21(6), 474–492.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Caleb Williams and Ethan Levien for invaluable help with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mini N. Shrivastav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shrivastav, M.N. (2012). Suprathreshold Auditory Processing in Noise-Induced Hearing Loss. In: Le Prell, C.G., Henderson, D., Fay, R.R., Popper, A.N. (eds) Noise-Induced Hearing Loss. Springer Handbook of Auditory Research, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9523-0_7

Download citation

Publish with us

Policies and ethics