Neural Coding of Sound with Cochlear Damage

  • Eric D. Young
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 40)


The cochlea is a delicate and complex structure designed to transduce sound into the electrical activity of neurons. Damage to any of the components of the cochlea can result in hearing impairment. The development, structure, and vulnerability of the cochlea are the subject of the other chapters in this volume. Here, the focus is on the consequences of cochlear malfunction for the representation of sound in the brain. To make the task feasible in the face of the many known physiological causes of hearing impairment, this chapter discusses the well-studied effects of damage to inner (IHCs) or outer hair cells (OHCs) and to spiral ganglion neurons (SGNs). For most cochlear malfunctions, the hair cells and the SGNs are the final common path for the effects of the damage, so that the implications of a particular type of damage can usually be understood in terms of its effects on these cells and the consequent changes in the brain. Most of the chapter focuses on the effects of acoustic trauma (i.e., exposure to a sustained loud sound), with some discussion of the effects of ototoxic substances, because these have most often been used in experimental studies to produce controlled cochlear lesions.


Hair Cell Auditory Nerve Basilar Membrane Cochlear Nucleus Tuning Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Comments from Amanda Lauer, Sean Slee, Brad May, Michael Heinz, and the editors of the SHAR series and of this volume improved the presentation of this chapter. Preparation of this chapter was supported by NIH grants DC00109 and DC0100594.


  1. Abbas, P. J., & Sachs, M. B. (1976). Two-tone suppression in auditory-nerve fibers: Extension of a stimulus-response relationship. Journal of the Acoustical Society of America, 59(1), 112–122.PubMedGoogle Scholar
  2. Angeli, S., Ultrera, R., Dib, S., Chiossone, E., Naranjo, C., Henriquez, O., & Porta, M. (2000). GJB2 gene mutations in childhood deafness. Acta Oto-Laryngologica, 120, 133–136.PubMedGoogle Scholar
  3. Asako, M., Holt, A. G., Griffith, R. D., Buras, E. D., & Altschuler, R. A. (2005). Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. Journal of Neuroscience Research, 81, 102–109.PubMedGoogle Scholar
  4. Ashmore, J. F. (1987). A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. Journal of Physiology-London, 388, 323–347.Google Scholar
  5. Ashmore, J. F. (2008). Cochlear outer hair cell motility. Physiological Reviews, 88, 173–210.PubMedGoogle Scholar
  6. Baer, T., Moore, B. C. J., & Kluk, K. (2002). Effects of low pass filtering on the intelligibility of speech in noise for people with and without dead regions at high frequencies. Journal of the Acoustical Society of America, 112, 1133–1144.PubMedGoogle Scholar
  7. Bielefeld, E. C., Coling, D., Chen, G. D., Li, M., Tanaka, C., Hu, B. H., & Henderson, D. (2008). Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hearing Research, 241, 26–33.PubMedCentralPubMedGoogle Scholar
  8. Blackburn, C. C., & Sachs, M. B. (1990). The representations of the steady-state vowel sound/ε/in the discharge patterns of cat anteroventral cochlear nucleus neurons. Journal of Neurophysiology, 63, 1191–1212.PubMedGoogle Scholar
  9. Bledsoe, S. C., Jr., Koehler, S., Tucci, D. L., Zhou, J., Le Prell, C., & Shore, S. E. (2009). Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. Journal of Neurophysiology, 102, 886–900.PubMedCentralPubMedGoogle Scholar
  10. Brown, M. C., & Ledwith, J. V. (1990). Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hearing Research, 49, 105–118.PubMedGoogle Scholar
  11. Brown, M. C., Nuttall, A. L., & Masta, R. I. (1983). Intracellular recordings from cochlear inner hair cells: Effects of stimulation of the crossed olivocochlear efferents. Science, 222, 69–72.PubMedGoogle Scholar
  12. Brownell, W. E., Bader, C. R., Bertrand, D., & de Ribaupierre, Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science, 227, 194–196.PubMedGoogle Scholar
  13. Bruce, I. C., Sachs, M. B., & Young, E. D. (2003). An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. Journal of the Acoustical Society of America, 113, 369–388.PubMedGoogle Scholar
  14. Buran, B. N., Strenzke, N., Neef, A., Gundelfinger, E. D., Moser, T., & Liberman, M. C. (2010). Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. Journal of Neuroscience, 30, 7587–7597.PubMedCentralPubMedGoogle Scholar
  15. Cai, Y., & Geisler, C. D. (1996a). Suppression in auditory-nerve fibers of cats using low-side suppressors. I. Temporal aspects. Hearing Research, 96, 94–112.PubMedGoogle Scholar
  16. Cai, Y., & Geisler, C. D. (1996b). Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results. Hearing Research, 96, 126–140.PubMedGoogle Scholar
  17. Cai, S., Ma, W.-L. D., & Young, E. D. (2009). Encoding intensity in ventral cochlear nucleus following acoustic trauma: Implications for loudness recruitment. Journal of the Association for Research in Otolaryngology, 10, 5–22.PubMedCentralPubMedGoogle Scholar
  18. Carney, L. H., Heinz, M. G., Evilsizer, M. E., Gilkey, R. H., & Colburn, H. S. (2002). Auditory phase opponency: A temporal model for masked detection at low frequencies. Acustica-Acta Acustica, 88, 334–347.Google Scholar
  19. Cheatham, M. A., Low-Zeddies, S., Naik, K., Edge, R., Zheng, J., Anderson, C. T., & Dallos, P. (2009). A chimera analysis of Prestin knock-out mice. Journal of Neuroscience, 29, 12000–12008.PubMedCentralPubMedGoogle Scholar
  20. Ching, T. Y. C., Dillon, H., & Byrne, D. (1998). Speech recognition of hearing-impaired listeners: Predictions from audibility and the limited role of high-frequency amplifcation. Journal of the Acoustical Society of America, 103, 1128–1140.PubMedGoogle Scholar
  21. Cohen-Salmon, M., Ott, T., Michel, V., Hardelin, J. P.,Perfettini, I., Eybalin, M., Wu, T., Marcus, D.C., Wangemann, P., Willecke, K., & Petit, C. (2002). Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Current Biology, 12, 1106–1111.PubMedCentralPubMedGoogle Scholar
  22. Colburn, H. S., Carney, L. H., & Heinz, M. G. (2003). Quantifying the information in auditory-nerve responses for level discrimination. Journal of the Association for Research in Otolaryngology, 4, 294–311.PubMedGoogle Scholar
  23. Cooper, N. P. (1996). Two-tone suppression in cochlear mechanics. Journal of the Acoustical Society of America, 99, 3087–3098.PubMedGoogle Scholar
  24. Cooper, N. P., & Rhode, W. S. (1995). Nonlinear mechanics at the apex of the guinea-pig cochlea. Hearing Research, 82(2), 225–243.PubMedGoogle Scholar
  25. Cooper, N. P., & Rhode, W. S. (1997). Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. Journal of Neurophysiology, 78, 261–270.PubMedGoogle Scholar
  26. Crouch, J. J., Sakaguchi, N., Lytle, C., & Schulte, B. A. (1997). Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. Journal of Histochemistry and Cytochemistry, 45, 773–778.PubMedGoogle Scholar
  27. Cui, Y. L., Holt, A. G., Lomax, C. A., & Altschuler, R. A. (2007). Deafness associated changes in two-pore domain potassium channels in rat inferior colliculus. Neuroscience, 149, 421–433.PubMedCentralPubMedGoogle Scholar
  28. Dallos, P., & Harris, D. (1978). Properties of auditory nerve responses in absence of outer hair cells. Journal of Neurophysiology, 41, 365–383.PubMedGoogle Scholar
  29. Dallos, P., Zheng, J., & Cheatham, M. A. (2006). Prestin and the cochlear amplifier. Journal of Physiology-London, 576, 37–42.Google Scholar
  30. Delgutte, B. (1990). Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level. Hearing Research, 49, 225–246.PubMedGoogle Scholar
  31. Delgutte, B., & Kiang, N. Y. S. (1984). Speech coding in the auditory nerve: I. Vowel-like sounds. Journal of the Acoustical Society of America, 75, 866–878.PubMedGoogle Scholar
  32. Delmaghani, S., del Castillo, F. J., Michel, V., Leibovici, M., Aghaie, A., Ron, U., Van Laer, L., Ben-Tai, N., Van Camp, G., Weil, D., Langa, F., Lathrop, M., Avan, P., & Petit, C. (2006). Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genetics, 38, 770–778.PubMedGoogle Scholar
  33. Deng, L., & Geisler, C. D. (1987). A composite auditory model for processing speech sounds. Journal of the Acoustical Society of America, 82, 2001–2012.PubMedGoogle Scholar
  34. Diependaal, R. J., de Boer, E., & Viergever, M. A. (1987). Cochlear power flux as an indicator of mechanical activity. Journal of the Acoustical Society of America, 82, 917–926.PubMedGoogle Scholar
  35. Dong, S., Mulders, W. H., Rodger, J., Woo, S., & Robertson, D. (2010). Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. European Journal of Neuroscience, 31, 1616–1628.PubMedGoogle Scholar
  36. Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of temporal envelope smearing on speech reception. Journal of the Acoustical Society of America, 95, 1053–1064.PubMedGoogle Scholar
  37. Dubno, J. R., & Dirks, D. D. (1989). Auditory filter characteristics and consonant recognition for hearing-impaired listeners. Journal of the Acoustical Society of America, 85, 1666–1675.PubMedGoogle Scholar
  38. El-Badry, M. M., & McFadden, S. L. (2009). Evaluation of inner hair cell and nerve fiber loss as sufficient pathologies underlying auditory neuropathy. Hearing Research, 255, 84–90.PubMedCentralPubMedGoogle Scholar
  39. Evans, E. F. (1972). The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. Journal of Physiology-London, 226, 263–287.Google Scholar
  40. Evans, E. F. (1975). The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology, 14, 419–442.PubMedGoogle Scholar
  41. Evans, E. F., & Harrison, R. V. (1975). Correlation between cochlear outer hair cell damage and derioration of cochlear nerve tuning properties in the guinea-pig. Journal of Physiology-London, 256, 43P–44P.Google Scholar
  42. Fant, G. (1970). Acoustic theory of speech production. The Hague: Mouton.Google Scholar
  43. Francis, H. W., & Manis, P. B. (2000). Effects of deafferentation on the electrophysiology of ventral cochlear nucleus neurons. Hearing Research, 149, 91–105.PubMedGoogle Scholar
  44. Fuchs, P. A., Glowatzki, E., & Moser, T. (2003). The afferent synapse of cochlear hair cells. Current Opinion in Neurobiology, 13, 452–458.PubMedGoogle Scholar
  45. Fullgrabe, C., Meyer, B., & Lorenzi, C. (2003). Effect of cochlar damage on the detction of complex temporal envelopes. Hearing Research, 178, 35–43.PubMedGoogle Scholar
  46. Gifford, M. L., & Guinnan, J. J. (1983). Effects of crossed olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones. Journal of the Acoustical Society of America, 74, 115–123.PubMedGoogle Scholar
  47. Gillespie, P. G., & Müller, U. (2009). Mechanotransduction by hair cells: Models, molecules, and mechanisms. Cell, 139, 33–44.PubMedCentralPubMedGoogle Scholar
  48. Glasberg, B. R., & Moore, B. C. J. (1986). Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. Journal of the Acoustical Society of America, 79, 1020–1033.PubMedGoogle Scholar
  49. Glasberg, B. R., & Moore, B. C. J. (2000). Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise. Journal of the Acoustical Society of America, 108, 2318–2328.PubMedGoogle Scholar
  50. Gorga, M. P., Neely, S. T., Dierking, D. M., Kopun, J., Jolkowski, K., Groenenboom, K., Tan, H., & Stiegemann, B. (2008). Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans. Journal of the Acoustical Society of America, 123, 2172–2190.PubMedCentralPubMedGoogle Scholar
  51. Guinan, J. J. (1996). Physiology of olivocochlear efferents. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The cochlea (pp. 435–502). New York: Springer.Google Scholar
  52. Hamernik, R. P., Turrentine, G., Roberto, M., Salvi, R., & Henderson, D. (1984). Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hearing Research, 13, 229–247.PubMedGoogle Scholar
  53. Harrison, R. V. (1981). Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. Journal of the Acoustical Society of America, 70, 1036–1044.PubMedGoogle Scholar
  54. Harrison, R. V., & Evans, E. F. (1979). Some aspects of temporal coding by single cochlear fribres from regions of cochlear hair cell degeneration in the guinea pig. Archives of Oto-Rhino-Laryngology, 224, 71–78.PubMedGoogle Scholar
  55. Heinz, M. G. (2010). Computational modeling of sensorineural hearing loss. In R. Meddis, E. A. Lopez-Poveda, R. R. Fay, & A. N. Popper (Eds.), Computational models of the auditory system (Vol. 35, pp. 177–202). New York: Springer.Google Scholar
  56. Heinz, M. G., & Swaminathan, J. (2009). Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. Journal of the Association for Research in Otolaryngology, 10, 407–423.PubMedCentralPubMedGoogle Scholar
  57. Heinz, M. G., & Young, E. D. (2004). Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. Journal of Neurophysiology, 91, 784–795.PubMedCentralPubMedGoogle Scholar
  58. Heinz, M. G., Issa, J. B., & Young, E. D. (2005). Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. Journal of the Association for Research in Otolaryngology, 6, 91–105.PubMedCentralPubMedGoogle Scholar
  59. Heinz, M. G., Swaminathan, J., Boley, J. D., & Kale, S. (2010). Across-fiber coding of temporal fine-structure: Effects of noise-induced hearing loss on auditory-nerve responses. In E. A. Lopez-Poveda, A. R. Palmer & R. Meddis (Eds.), The neurophysiological bases of auditory perception (pp. 621–630). New York: Springer.Google Scholar
  60. Hequembourg, S., & Liberman, M. C. (2001). Spiral ligament pathology: A major aspect of age-related cochlear degeneration in C57BL/6 mice. Journal of the Association for Research in Otolaryngology, 2, 118–129.PubMedCentralPubMedGoogle Scholar
  61. Hirose, K., & Liberman, M. C. (2003). Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. Journal of the Association for Research in Otolaryngology, 4, 339–352.PubMedCentralPubMedGoogle Scholar
  62. Hopkins, K., Moore, B. C. J., & Stone, M. A. (2008). Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech. Journal of the Acoustical Society of America, 123, 1140–1153.PubMedCentralPubMedGoogle Scholar
  63. Jagger, D. J., & Forge, A. (2006). Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. Journal of Neuroscience, 26, 1260–1268.PubMedGoogle Scholar
  64. Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.PubMedGoogle Scholar
  65. Kale, S., & Heinz, M. G. (2010). Envelope coding in auditory nerve fibers following noise-induced hearing loss. Journal of the Association for Research in Otolaryngology, (epub ahead of print). doi: 10.1007/s10162-010-0223-6Google Scholar
  66. Khimich, D., Nouvian, R., Pujol, R., tom Dieck, S., Egner, A., Gundelfinger, E. D., & Moser, T. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434, 889–894.PubMedGoogle Scholar
  67. Kiang, N. Y., Moxon, E. C., & Levine, R. A. (1970). Auditory-nerve activity in cats with normal and abnormal cochleas. In G. E. W. Wolstenholme & T. Knight (Eds.), Sensorineural hearing loss (pp. 241–273). London: Churchill.Google Scholar
  68. Kiang, N. Y. S., Liberman, M. C., & Levine, R. A. (1976). Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Annals of Otology, Rhinology, and Laryngolgy, 85, 752–768.Google Scholar
  69. Kiang, N. Y., Rho, J. M., Northrop, C. C., Liberman, M. C., & Ryugo, D. K. (1982). Hair-cell innervation by spiral ganglion cells in adult cats. Science, 217, 175–177.PubMedGoogle Scholar
  70. Kikuchi, T., Adams, J. C., Miyabe, Y., So, E., & Kobayashi, T. (2000). Potassium ion recycling pathway via gap junction systems in the mammalian cochlea an its interruption in hereditary nonsyndromic deafness. Medical Electron Microscopy, 33, 51–56.PubMedGoogle Scholar
  71. Kilgard, M. P., & Merzenich, M. M. (1998). Plasticity of temporal information processing in the primary auditory cortex. Nature Neuroscience, 1, 727–731.PubMedCentralPubMedGoogle Scholar
  72. Kim, D. O., Molnar, C. E., & Matthews, J. W. (1980). Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. Journal of the Acoustical Society of America, 67, 1704–1721.PubMedGoogle Scholar
  73. Kim, J. J., Gross, J. S., Morest, D. K., & Potashner, S. J. (2004). Quantitative study of degeneration and new growth of axons an dsynaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. Journal of Neuroscience Research, 77, 829–842.PubMedGoogle Scholar
  74. Konishi, T., Hamrick, P. E., & Walsh, P. J. (1978). Ion transport in guinea pig cochlea: I. Potassium and sodium transport. Acta Oto-Laryngologica, 86, 22–34.PubMedGoogle Scholar
  75. Kraus, N., & McGee, T. (1992). Electrophysiology of the human auditory system. In A. N. Popper & R. R. Fay (Eds.), The mammalian auditory pathway: Neurophysiology (pp. 335–403). Berlin: Springer-Verlag.Google Scholar
  76. Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26, 2115–2123.PubMedCentralPubMedGoogle Scholar
  77. Kujawa, S. G., & Liberman, A. M. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29, 14077–14085.PubMedCentralPubMedGoogle Scholar
  78. Lacher-Fougère, S., & Demany, L. (2005). Consequences of cochlear damage for the detection of interaural phase differences. Journal of the Acoustical Society of America, 118, 19–26.Google Scholar
  79. Lang, H., Jyothi, V., Smythe, N. M., Dubno, J. R., Schulte, B. A., & Schmiedt, R. A. (2010). Chronic reduction of endocochlear potential reduces auditory nerve activity: Further confirmation of an animal model of metabolic presbyacusis. Journal of the Association for Research in Otolaryngology, 11, 419–434.PubMedCentralPubMedGoogle Scholar
  80. Le Prell, G., Sachs, M. B., & May, B. J. (1996). Representation of vowel-like spectra by discharge rate responses of individual auditory-nerve fibers. Auditory Neuroscience, 2, 275–288.Google Scholar
  81. Leake, P. A., Snyder, R. L., Rebscher, S. J., Moore, C. M., & Vollmer, M. (2000). Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hearing Research, 147, 221–241.PubMedGoogle Scholar
  82. Leao, R. N., Berntson, A., I.D., F., & Walmsley, B. (2004). Reduced low-voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. Journal of Physiology-London, 559, 25–33.Google Scholar
  83. Leek, M. R., & Summers, V. (1996). Reduced frequency selectivity and the preservation of spectral contrast in noise. Journal of the Acoustical Society of America, 100, 1796–1806.PubMedGoogle Scholar
  84. Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America, 63, 442–455.PubMedGoogle Scholar
  85. Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.PubMedGoogle Scholar
  86. Liberman, M. C. (1982). The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustical Society of America, 72, 1441–1449.PubMedGoogle Scholar
  87. Liberman, M. C. (1984). Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hearing Research, 16, 33–41.PubMedGoogle Scholar
  88. Liberman, M. C., & Beil, D. G. (1979). Hair cell condition and auditory nerve response in normal and noise-damaged cochleas. Acta Oto-Laryngologica, 88, 161–176.PubMedGoogle Scholar
  89. Liberman, M. C., & Dodds, L. W. (1984a). Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hearing Research, 16, 43–53.PubMedGoogle Scholar
  90. Liberman, M. C., & Dodds, L. W. (1984b). Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Research, 16, 55–74.PubMedGoogle Scholar
  91. Liberman, M. C., & Kiang, N. Y. (1984). Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hearing Research, 16, 75–90.PubMedGoogle Scholar
  92. Liberman, M. C., & Mulroy, M. J. (1982). Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology. In R. P. Hamernik, D. Henderson, & R. Salvi (Eds.), New perspectives on noise-induced hearing loss (pp. 105–135). New York: Raven Press.Google Scholar
  93. Liberman, M. C., Gao, J., He, D. Z. Z., Wu, X., Jia, S., & Zuo, J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 419, 300–304.PubMedGoogle Scholar
  94. Lonsbury-Martin, B. L., & Martin, G. K. (1981). Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: Behavioral and neural observations. Journal of Neurophysiology, 46, 563–586.PubMedGoogle Scholar
  95. Lopez-Poveda, E. A. (2005). Spectral processing by the peripheral auditory system: Facts and models. International Review of Neurobiology, 70, 7–48.PubMedGoogle Scholar
  96. Lorenzi, C., Gilbert, G., Carn, H., Garnier, S., & Moore, B. C. J. (2006). Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proceedings of the National Academy of Sciences of the USA, 103, 18866–18869.PubMedCentralPubMedGoogle Scholar
  97. Louage, D. H., van der Heijden, M., & Joris, P. X. (2004). Temporal properties of responses to broadband noise in the auditory nerve. Journal of Neurophysiology, 91, 2051–2065.PubMedGoogle Scholar
  98. Ma, W.-L., & Young, E. D. (2006). Dorsal cochlear nucleus response properties following acoustic trauma: Response maps and spontaneous activity. Hearing Research, 216–217, 176–188.PubMedCentralPubMedGoogle Scholar
  99. Marcus, D. C., Wu, T., Wangemann, P., & Kofuji, P. (2002). KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology-Cell Physiology, 282, C403–407.PubMedGoogle Scholar
  100. May B.J., Huang A., Le Prell G., Hienz R.D. (1996) Vowel formant frequency discrimination in cats: Comparison of auditory nerve representations and psychophysical thresholds. Auditory Neuroscience, 3, 135–162.PubMedCentralPubMedGoogle Scholar
  101. May, B. J., Little, N., & Saylor, S. (2009). Loudness perception in the domestic cat: Reaction time estimates of equal-loudness contours and recruitment effects. Journal of the Association for Research in Otolaryngology, 10, 295–308.PubMedCentralPubMedGoogle Scholar
  102. Miller, M. I., & Sachs, M. B. (1983). Representation of stop consonants in the discharge patterns of auditory-nerve fibers. Journal of the Acoustical Society of America, 74, 502–517.PubMedGoogle Scholar
  103. Miller, R. L., Schilling, J. R., Franck, K. R., & Young, E. D. (1997). Effects of acoustic trauma on the representation of the vowel/ε/in cat auditory nerve fibers. Journal of the Acoustical Society of America, 101, 3602–3616.PubMedGoogle Scholar
  104. Miller, R. L., Calhoun, B. M., & Young, E. D. (1999a). Contrast enhancement improves the representation of/e/-like vowels in the hearing-impaired auditory nerve. Journal of the Acoustical Society of America, 106, 2693–2708.PubMedGoogle Scholar
  105. Miller, R. L., Calhoun, B. M., & Young, E. D. (1999b). Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma. Journal of the Acoustical Society of America, 105, 311–325.PubMedGoogle Scholar
  106. Miskolczy-Fodor, F. (1960). Relation between loudness and diration of tonal pulses. III. Response in cases of abnormal loudness function. Journal of the Acoustical Society of America, 32, 486–492.Google Scholar
  107. Mistrik, P., & Ashmore, J. F. (2009). The role of potassium recirculation in cochlear amplification. Current Opinion in Otolaryngology, 17, 394–399.Google Scholar
  108. Moore, B. C. J. (2004a). Dead regions of the cochlea: Conceptual foundations, diagnosis and clinical applications. Ear and Hearing, 25, 98–116.PubMedGoogle Scholar
  109. Moore, B. C. J. (2004b). An introduction to the psychology of hearing. Amsterdam: Elsevier.Google Scholar
  110. Moore, B. C. J. (2007). Cochlear hearing loss: Physiological, psychological, and technical issues. Chichester: John Wiley & Sons.Google Scholar
  111. Moore, B. C. J. (2008). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9, 399–406.PubMedCentralPubMedGoogle Scholar
  112. Moore, B. C. J., & Glasberg, B. R. (1983). Formulae describing frequency selectivity as a function of frequency and level and their use in calculating excitation patterns. Journal of the Acoustical Society of America, 74, 750–753.PubMedGoogle Scholar
  113. Moore, B. C. J., & Glasberg, B. R. (1997). A model of loudness perception applied to cochlear hearing loss. Auditory Neuroscience, 3, 289–311.Google Scholar
  114. Moore, B. C. J., & Glasberg, B. R. (2004). A revised model of loudness perception applied to cochlear hearing loss. Hearing Research, 188, 70–88.PubMedGoogle Scholar
  115. Moore, B. C. J., Glasberg, B. R., Hess, R. F., & Birchall, J. P. (1985). Effects of flanking noise bands on the rate of growth of loudness of tones in normal and recruiting ears. Journal of the Acoustical Society of America, 77, 1505–1513.PubMedGoogle Scholar
  116. Muly, S. M., Gross, J. S., & Potashner, S. J. (2004). Noise trauma alters D-[3H] aspartate release and AMPA binding in chinchilla cochlear nucleus. Journal of Neuroscience Research, 75, 585–596.PubMedGoogle Scholar
  117. Murugasu, E., & Russell, I. J. (1996). The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. Journal of Neuroscience, 16, 325–332.PubMedGoogle Scholar
  118. Nin, F., Hibino, H., Doi, K., Suzuki, T., Hisa, Y., & Kurachi, Y. (2008). The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proceedings of the National Academy of Sciences USA, 105, 1751–1756.Google Scholar
  119. Noreña, A. J., & Eggermont, J. J. (2005). Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. Journal of Neuroscience, 25, 699–705.PubMedGoogle Scholar
  120. Nuttall, A. L., & Dolan, D. F. (1996). Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. Journal of the Acoustical Society of America, 99, 1556–1565.PubMedGoogle Scholar
  121. Ohlemiller, K. K., & Echteler, S. M. (1990). Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil. Journal of Comparative Physiology A, 167, 329–338.Google Scholar
  122. Oleskovich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. Journal of Physiology-London, 540, 447–455.Google Scholar
  123. Otte, J., Schuknecht, H. F., & Kerr, A. G. (1978). Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope, 88, 1231–1246.Google Scholar
  124. Overstreet, E. H., Temchin, A. N., & Ruggero, M. A. (2002). Basilar membrane vibrations near the round window of the gerbil cochlea. Journal of the Association for Research in Otolaryngology, 3, 351–361.PubMedCentralPubMedGoogle Scholar
  125. Oxenham, A. J., & Bacon, S. P. (2003). Cochlear compression: Perceptual measures and implications for normal and impaired hearing. Ear and Hearing, 24, 352–366.PubMedGoogle Scholar
  126. Oxenham, A. J., & Plack, C. J. (1997). A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 101, 3666–3675.PubMedGoogle Scholar
  127. Palmer, A. R., & Evans, E. F. (1982). Intensity coding in the auditory periphery of the cat: Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hearing Research, 7(3), 305–323.PubMedGoogle Scholar
  128. Palmer, A. R., & Moorjani, P. A. (1993). Responses to speech signals in the normal and pathological peripheral auditory system. Progress in Brain Research, 97, 107–115.PubMedGoogle Scholar
  129. Palmer, A. R., Winter, I. M., & Darwin, C. J. (1986). The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primary-like cochlear nucleus neurons. Journal of the Acoustical Society of America, 79, 100–113.PubMedGoogle Scholar
  130. Pavlovic, C. V. (1984). Use of the articulation index for assessing residual auditory function in listeners with sensorineural hearing impairment. Journal of the Acoustical Society of America, 75, 1253–1258.PubMedGoogle Scholar
  131. Pickles, J. O. (1983). Auditory-nerve correlates of loudness summation with stimulus bandwidth, in normal and pathological cochleae. Hearing Research, 12, 239–250.PubMedGoogle Scholar
  132. Pickles, J. O. (2008). An introduction to the physiology of hearing (3 rd ed.). London: Academic Press.Google Scholar
  133. Plack, C. J., Oxenham, A. J., Simonson, A. M., O’Hanlon, C. G., Drga, V., & Arfifianto, D. (2008). Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. Journal of the Acoustical Society of America, 123, 4321–4330.PubMedCentralPubMedGoogle Scholar
  134. Popelar, J., Syka, J., & Berndt, H. (1987). Effect of noise on auditory evoked responses in awake guinea pigs. Hearing Research, 26, 239–247.PubMedGoogle Scholar
  135. Quraishi, I. H., & Raphael, R. M. (2008). Generation of the endocochlear potential: A biophysical model. Biophysical Journal, 94, L64–66.PubMedCentralPubMedGoogle Scholar
  136. Rajan, R., Irvine, D. R., Wise, L. Z., & Heil, P. (1993). The effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology, 338, 17–49.PubMedGoogle Scholar
  137. Rance, G. (2005). Auditory neuropathy/dys-synchrony and its perceptual consequences. Trends in Amplification, 9, 1–43.PubMedGoogle Scholar
  138. Recio-Spinoso, A., Temchin, A. N., van Dijk, P., Fan, Y. H., & Ruggero, M. A. (2005). Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers. Journal of Neurophysiology, 93, 3615–3634.PubMedGoogle Scholar
  139. Reed, C. M., Braida, L. D., & Zurek, P. M. (2009). Review of the literature on temporal resolution in listeners with cochlear hearing impairment: A critical assessment of the role of suprathreshold deficits. Trends in Amplification, 13, 4–43.PubMedCentralPubMedGoogle Scholar
  140. Relkin, E. M., & Doucet, J. R. (1997). Is loudness simply proportional to the auditory nerve spike count? Journal of the Acoustical Society of America, 101, 2735–2740.PubMedGoogle Scholar
  141. Richardson, G. P., Lukashkin, A. N., & Russell, I. J. (2008). The tectorial membrane: One slice of a complex cochlear sandwich. Current Opinion in Otlaryngology, 16, 458–464.Google Scholar
  142. Robertson, D. (1982). Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea. Hearing Research, 7, 55–74.PubMedGoogle Scholar
  143. Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Research, 9, 263–278.PubMedGoogle Scholar
  144. Robertson, D. (1984). Horseradish peroxidase injection of physiologically characterized afferent and efferent neurons in the guinea pig spiral ganglion. Hearing Research, 15, 113–121.PubMedGoogle Scholar
  145. Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352.PubMedCentralPubMedGoogle Scholar
  146. Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer-Verlag.Google Scholar
  147. Rouiller, E. M., Cronin-Schreiber, R., Fekete, D. M., & Ryugo, D. K. (1986). The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. Journal of Comparative Neurology, 249, 261–278.PubMedGoogle Scholar
  148. Ruel, J., Wang, J., Rebillard, G., Eybalin, M., Lloyd, R., Pujol, R., & Puel, J. L. (2007). Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hearing Research, 227, 19–27.PubMedGoogle Scholar
  149. Ruggero, M. A., & Rich, N. C. (1991). Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. Journal of Neuroscience, 11, 1057–1067.PubMedCentralPubMedGoogle Scholar
  150. Ruggero, M. A., Robles, L., & Rich, N. C. (1992). Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression. Journal of Neurophysiology, 68, 1087–1099.PubMedGoogle Scholar
  151. Ruggero, M. A., Rich, N. C., & Recio, A. (1996). The effect of intense acoustic stimulation on basilar-membrane vibrations. Auditory Neuroscience, 2, 329–345.Google Scholar
  152. Ruggero, M. A., Rich, N. C., Recio, A., & Narayan, S. S. (1997). Basilar-membrane responses to tones at the base of the chinchilla cochlea. Journal of the Acoustical Society of America, 101, 2151–2163.PubMedCentralPubMedGoogle Scholar
  153. Runhaar, G., Schedler, J., & Manley, G. A. (1991). The potassium concentration in the cochlear fluids of the embryonic and post-hatching chick. Hearing Research, 56, 227–238.PubMedGoogle Scholar
  154. Sachs, M. B., & Abbas, P. J. (1974). Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. Journal of the Acoustical Society of America, 56(6), 1835–1847.PubMedGoogle Scholar
  155. Sachs, M. B., & Abbas, P. J. (1976). Phenomenological model for two-tone suppression. Journal of the Acoustical Society of America, 60, 1157–1163.Google Scholar
  156. Sachs, M. B., & Young, E. D. (1979). Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. Journal of the Acoustical Society of America, 66, 470–479.PubMedGoogle Scholar
  157. Salt, A. N., Melichar, I., & Thalmann, R. (1987). Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope, 97, 984–991.PubMedGoogle Scholar
  158. Salvi, R. J., Hamernik, R. P., & Henderson, D. (1983). Response patterns of auditory nerve fibers during temporary threshold shift. Hearing Research, 10, 37–67.PubMedGoogle Scholar
  159. Salvi, R. J., Saunders, S. S., Gratton, M. A., Arehole, S., & Powers, N. (1990). Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hearing Research, 50, 245–257.PubMedGoogle Scholar
  160. Sanes, D. H., & Constantine-Paton, M. (1985). The development of stimulus following in the cochlear nerve and inferior colliculus of the mouse. Brain Research, 354, 255–267.PubMedGoogle Scholar
  161. Santarelli, R., Del Castillo, I., Rodriguez-Ballesteros, M., Scimemi, P., Cama, E., Arslan, E., & Starr, A. (2009). Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. Journal of the Association for Research in Otolaryngology, 10, 545–556.PubMedCentralPubMedGoogle Scholar
  162. Saunders, J. C., Bock, G. R., James, R., & Chen, C. S. (1972). Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB-c mice. Experimental Neurology, 37, 388–394.PubMedGoogle Scholar
  163. Scheidt, R. E., Kale, S., & Heinz, M. G. (2010). Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hearing Research, (epub ahead of print).Google Scholar
  164. Schilling, J. R., Miller, R. L., Sachs, M. B., & Young, E. D. (1998). Frequency shaped amplification changes the neural representation of speech with noise-induced hearing loss. Hearing Research, 117, 57–70.PubMedGoogle Scholar
  165. Schlauch, R. S., DiGiovanni, J. J., & Ries, D. T. (1998). Basilar membrane nonlinearity and loudness. Journal of the Acoustical Society of America, 103, 2010–2020.PubMedGoogle Scholar
  166. Schmiedt, R. A. (1996). Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea. Hearing Research, 102, 125–132.PubMedGoogle Scholar
  167. Schmiedt, R. A., & Zwislocki, J. J. (1980). Effects of hair cell lesions on responses of cochlear nerve fibers. II. Single- and two-tone intensity functions in relation to tuning curves. Journal of Neurophysiology, 43, 1390–1405.PubMedGoogle Scholar
  168. Schmiedt, R. A., Zwislocki, J. J., & Hamernik, R. P. (1980). Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. Journal of Neurophysiology, 43, 1367–1389.PubMedGoogle Scholar
  169. Schmiedt, R. A., Lang, H., Okamura, H. O., & Schulte, B. A. (2002). Effects of furosemide applied chronically to the round window: A model of metabolic presbyacusis. Journal of Neuroscience, 22, 9643–9650.PubMedGoogle Scholar
  170. Schoen, C. J., Emery, S. B., Thorne, M. C., Ammana, H. R., Sliwerska, E., Arnett, J., Hortsch, M., Hannan, F., Burmeister, M., & Lesperance, M. M. (2010). Increased activity of diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proceedings of the National Academy of Sciences of the USA,, 107, 13396–13401.PubMedCentralPubMedGoogle Scholar
  171. Scholl, U. I., Choi, M., Liu, T., Ramaekers, V. T., Hausler, M. G., Grimmer, J., Tobe, S. W., Farhi, A., Nelson-Williams, C., & Lifton, R. P. (2009). Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proceedings of the National Academy of Sciences of the USA, 106, 5842–5847.PubMedCentralPubMedGoogle Scholar
  172. Schuknecht, H. F., & Gacek, M. R. (1993). Cochlear pathology in presbyacusis. Annals of Otology Rhinology and Laryngology, 102, 1–16.Google Scholar
  173. Schulte, B. A., & Schmiedt, R. A. (1992). Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hearing Research, 61, 35–46.PubMedGoogle Scholar
  174. Sewell, W. F. (1984a). The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hearing Research, 14, 305–314.PubMedGoogle Scholar
  175. Sewell, W. F. (1984b). Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hearing Research, 15, 69–72.PubMedGoogle Scholar
  176. Sewell, W. F. (1984c). The relation between the endocochlear potential and spontaneous activity in auditory nerve fibers of the cat. Journal of Physiology-London, 347, 685–696.Google Scholar
  177. Shamma, S. A. (1985). Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. Journal of the Acoustical Society of America, 78, 1612–1621.PubMedGoogle Scholar
  178. Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304.PubMedGoogle Scholar
  179. Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2010). Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology, 11:343–65.PubMedCentralPubMedGoogle Scholar
  180. Shore, S. E., Koehler, S., Oldakowski, M., Hughes, L. F., & Syed, S. (2008). Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. European Journal of Neuroscience, 27, 155–168.PubMedCentralPubMedGoogle Scholar
  181. Siebert, W. M. (1968). Stimulus transformations in the peripheral auditory system. In A. Kollers & M. Eden (Eds.), Recognizing patterns (pp. 104–133). Cambridge, MA: MIT Press.Google Scholar
  182. Sinex, D. G., & Geisler, C. D. (1983). Responses of auditory-nerve fibers to consonant-vowel syllables. Journal of the Acoustical Society of America, 73, 602–615.PubMedGoogle Scholar
  183. Sinex, D. G., & Geisler, C. D. (1984). Comparison of the responses of auditory nerve fibers to consonant-vowel syllables with predictions from linear models. Journal of the Acoustical Society of America, 76, 116–121.PubMedGoogle Scholar
  184. Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416.Google Scholar
  185. Snyder, R. L., Rebscher, S. J., Cao, K. L., Leake, P. A., & Kelly, K. (1990). Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hearing Research, 50, 7–33.PubMedGoogle Scholar
  186. Spicer, S. S., & Schulte, B. A. (1991). Differentiation of inner ear fibrocytes according to their ion transport related activity. Hearing Research, 56, 53–64.PubMedGoogle Scholar
  187. Splawski, I., Timothy, K. W., Vincent, G. M., & Atkinson, D. L. (1997). Molecular basis of the long-QT syndrome associated with deafness. New England Journal of Medicine, 336, 1562–1567.PubMedGoogle Scholar
  188. Spoendlin, H. (1971). Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Oto-Laryngologica, 71(2), 166–176.PubMedGoogle Scholar
  189. Starr, A., Picton, T. W., Sininger, Y., Hood, L. J., & Berlin, C. I. (1996). Auditory neuropathy. Brain, 119, 741–753.PubMedGoogle Scholar
  190. Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.Google Scholar
  191. Stillman, J. A., Zwislocki, J. J., Zhang, M., & Cefaratti, L. K. (1993). Intensity just-noticeable differences at equal-loudness levels in normal and pathological ears. Journal of the Acoustical Society of America, 93, 425–434.PubMedGoogle Scholar
  192. Summers, V., & Leek, M. R. (1994). The internal representation of spectral contrast in hearing-impaired listeners. Journal of the Acoustical Society of America, 95, 3518–3528.PubMedGoogle Scholar
  193. Sumner, C. J., O’Mard, L. P., Lopez-Poveda, E. A., & Meddis, R. (2003). A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate response. Journal of the Acoustical Society of America, 113, 3264–3274.PubMedGoogle Scholar
  194. Suneja, S. K., Potashner, S. J., & Benson, C. G. (1998). Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Experimental Neurology, 151, 273–288.PubMedGoogle Scholar
  195. Syka, J. (2002). Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiological Reviews, 82, 601–636.PubMedGoogle Scholar
  196. Syka, J., Rybalko, N., & Popelar, J. (1994). Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hearing Research, 78, 158–168.PubMedGoogle Scholar
  197. Szczepaniak, W. S., & Moller, A. R. (1996). Evidence of neuronal plasticity within the inferior colliculus after noise exposure: A study of evoked potentials in the rat. Electroencephalography and Clinical Neurophysiology, 100, 158–164.PubMedGoogle Scholar
  198. Taberner, A. M., & Liberman, A. M. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93, 557–569.PubMedGoogle Scholar
  199. Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2009). Developmental hearing loss disrupts synaptic inhibition: Implications for auditory processing. Future Neurology, 4, 331–349.PubMedCentralPubMedGoogle Scholar
  200. Takeuchi, S., Ando, M., & Kakigi, A. (2000). Mechanisms generating endocochlear potential: Role played by intermediate cells in stria vascularis. Biophysical Journal, 79, 2572–2582.PubMedCentralPubMedGoogle Scholar
  201. Temchin, A. N., Rich, N. C., & Ruggero, M. A. (2008). Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibration. Journal of Neurophysiology, 100, 2889–2898.PubMedCentralPubMedGoogle Scholar
  202. ter Keurs, M., Festen, J. M., & Plomp, R. (1992). Effect of spectral envelope smearing on speech reception. I. Journal of the Acoustical Society of America, 91, 2872–2880.PubMedGoogle Scholar
  203. Trautwein, P., Hofstetter, P., Wang, J., Salvi, R., & Nostrant, A. (1996). Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hearing Research, 96, 71–82.PubMedGoogle Scholar
  204. Turner, C. W. (2006). Hearing loss and the limits of amplification. Audiol and Neuro-Otology, 11(Suppl. 1), 2–5.Google Scholar
  205. Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.PubMedCentralPubMedGoogle Scholar
  206. Tyler, R. S., Hall, J. W., Glasberg, B. R., Moore, B. C., & Patterson, R. D. (1984). Auditory filter asymmetry in the hearing impaired. Journal of the Acoustical Society of America, 76, 1363–1368.PubMedGoogle Scholar
  207. Vale, C., & Sanes, D. H. (2002). The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. European Journal of Neuroscience, 16, 2394–2404.PubMedGoogle Scholar
  208. Vale, C., Juiz, J. M., Moore, D. R., & Sanes, D. H. (2004). Unilateral cochlear ablation produces greater loss of inhibition in the contralateral inferior colliculus. European Journal of Neuroscience, 20, 2133–2140.PubMedGoogle Scholar
  209. Vetter, D. E., Mann, J. R., Wangemann, P., Liu, J., McLaughlin, K. J., Lesage, F., Marcus, D. C., Lazdunski, M., Heinemann, S. F., & Barhanin, J. (1996). Inner ear defects induced by null mutation of the isk gene. Neuron, 17, 1251–1264.PubMedGoogle Scholar
  210. Vinay, & Moore, B. C. J. (2007). Prevalence of dead regions in subjects with sensorineural hearing loss. Ear and Hearing, 28, 231–241.PubMedGoogle Scholar
  211. Walton, J. P. (2010). Timing is everything: Temporal processing deficits in the aged auditory brainstem. Hearing Research, 264, 63–69.PubMedGoogle Scholar
  212. Wang, J., Powers, N. L., Hofstetter, P., Trautwein, P., Ding, D., & Salvi, R. (1997). Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hearing Research, 107, 67–82.PubMedGoogle Scholar
  213. Wang, J., Ding, D., & Salvi, R. J. (2002). Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hearing Research, 168, 238–249.PubMedGoogle Scholar
  214. Wangemann, P. (1995). Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hearing Research, 90, 149–157.PubMedGoogle Scholar
  215. Wangemann, P., & Schacht, J. (1996). Homeostatic mechanisms in the cochlea. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The cochlea (pp. 130–185). New York: Springer.Google Scholar
  216. Warr, W. B. (1992). Organization of olivocochlear efferent systems in mammals. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 410–448). New York: Springer-Verlag.Google Scholar
  217. Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461, 1126–1129.PubMedCentralPubMedGoogle Scholar
  218. Wightman, F. L., & Kistler, D. J. (1992). The dominant role of low-frequency interaural time differences in sound localization. Journal of the Acoustical Society of America, 91, 1648–1661.PubMedGoogle Scholar
  219. Winter, I. M., Robertson, D., & Yates, G. K. (1990). Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hearing Research, 45, 191–202.PubMedGoogle Scholar
  220. Wong, J. C., Miller, R. L., Calhoun, B. M., Sachs, M. B., & Young, E. D. (1998). Effects of high sound levels on responses to the vowel/ε/in cat auditory nerve. Hearing Research, 123, 61–77.PubMedGoogle Scholar
  221. Wu, T., & Marcus, D. C. (2003). Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice. Journal of the Association for Research in Otolaryngology, 4, 353–362.PubMedCentralPubMedGoogle Scholar
  222. Yates, G. K., Winter, I. M., & Robertson, D. (1990). Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hearing Research, 45, 203–220.PubMedGoogle Scholar
  223. Young, E. D. (2008). Neural representation of spectral and temporal information in speech. Philosophical Transactions of the Royal Society B, 363, 923–945. doi: doi:10.1098/rstb.2007.2151Google Scholar
  224. Young, E. D., & Oertel, D. (2004). The cochlear nucleus. In G. M. Shepherd (Ed.), The synaptic organization of the brain (5th Ed., pp. 125–163). New York: Oxford University Press.Google Scholar
  225. Young, E. D., & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. Journal of the Acoustical Society of America, 66, 1381–1403.PubMedGoogle Scholar
  226. Zdebik, A. A., Wangemann, P., & Jentsch, T. J. (2009). Potassium ion movement in the inner ear: Insights from genetic disease and mouse models. Physiology, 24, 307–316.PubMedGoogle Scholar
  227. Zeng, F. G., & Turner, C. W. (1991). Binaural loudness matches in unilaterally impaired listeners. Quarterly Journal of Experimental Psychology, 43A, 565–583.Google Scholar
  228. Zeng, F. G., Kong, Y. Y., Michalewski, H. J., & Starr, A. (2005). Perceptual consequences of disrupted auditory nerve activity. Journal of Neurophysiology, 93, 3050–3063.PubMedGoogle Scholar
  229. Zhang, X., Heinz, M. G., Bruce, I. C., & Carney, L. H. (2001). A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. Journal of the Acoustical Society of America, 109, 648–670.Google Scholar
  230. Zheng, X. Y., Henderson, D., Hu, B. H., & McFadden, S. L. (1997). Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity. Hearing Research, 105, 65–76.PubMedGoogle Scholar
  231. Zheng, J., Shen, W., He, D. Z. Z., Long, K. B., Madison, L. D., & Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature, 405, 149–155.PubMedGoogle Scholar
  232. Zidanic, M., & Brownell, W. E. (1990). Fine structure of the intracochlear potential field. I. The silent current. Biophysical Journal, 57, 1253–1268.Google Scholar
  233. Zilany, M. S. A., & Bruce, I. C. (2006). Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. Journal of the Acoustical Society of America, 120, 1446–1466.PubMedGoogle Scholar
  234. Zilany, M. S. A., & Bruce, I. C. (2007). Representation of the vowel/eh/in normal and impaired auditory nerve fibers: Model predictions of responses in cats. Journal of the Acoustical Society of America, 122, 402–417.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations