Effects of Exposure to Chemicals on Noise-Induced Hearing Loss

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 40)

Abstract

Several factors have been studied in an effort to explain why the prevalence and degree of noise-induced hearing loss (NIHL) can vary so much within a group and among groups. Some of the factors studied to date include variations in exposure (see Henderson and Hamernik, Chap. 4), age (see Rabinowitz, Chap. 2; Bielefeld, Chap. 10), gender, genetics (see Gong and Lomax, Chap. 9), race, and general health indicators, such as blood pressure and use of certain medications (Toppila et al. 2000). The focus of the present chapter is the interaction of ototoxic industrial chemicals with noise, which results in increased hearing loss.

Notes

Acknowledgments

This chapter is dedicated to the memory of Dr. Derek E. Dunn.

References

  1. American Academy of Audiology (AAA). (2009). American Academy of Audiology Position Statement and Clinical Practice Guidelines. Ototoxicity Monitoring. Reston, VA: American Academy of Audiology.Google Scholar
  2. Abbate, C., Giorgianni, C., Munao, F., & Brecciaroli, R. (1993). Neurotoxicity induced by exposure to toluene. An electrophysiologic study. International Archives of Occupational and Environmental Health, 64(6), 389–392.PubMedGoogle Scholar
  3. Ahn, Y. S., Morata, T. C., Stayner, L. T., & Smith, R. (2005). Hearing loss among iron and steel workers exposed to low levels of carbon monoxide and noise. Abstract of the Ninth International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health. Gyeongju, Korea, September 26–29, 2005.Google Scholar
  4. Araki, S., Murata, K., Yokoyama, K., & Uchida, E. (1992). Auditory event-related potential (P300) in relation to peripheral nerve conduction in workers exposed to lead, zinc, and copper: Effects of lead on cognitive function and central nervous system. American Journal of Industrial Medicine, 21(4), 539–547.PubMedGoogle Scholar
  5. Ashmore, J. F. (1987). A fast motile response in guinea pig outer hair cells: The cellular basis of the cochhear amplifier. Journal of Physiology, 388(1–2), 323–347.PubMedCentralPubMedGoogle Scholar
  6. Barregård, L., & Axelsson, A. (1984). Is there an ototraumatic interaction between noise and solvents? Scandinavian Audiology, 13(3), 151–155.PubMedGoogle Scholar
  7. Bernardi, A. P. A. (2000). Workers exposed to noise and toluene: Study of otoacoustic emissions and contraletral suppression. São Paulo, Brazil: Faculdade de Saúde Pública da Universidade de São Paulo (Master’s degree dissertation in Portuguese).Google Scholar
  8. Bleecker, M. L., Ford, D. P., Lindgren, K. N., Scheetz, K., & Tiburzi, M. J. (2003). Association of chronic and current measures of lead exposure with different components of brainstem auditory evoked potentials. Neurotoxicology, 24(4–5), 625–631.PubMedGoogle Scholar
  9. Brandt-Lassen, R., Lund, S. P., & Jepsen, G. B. (2000). Rats exposed to toluene and noise may develop loss of auditory sensitivity due to synergistic interaction. Noise and Health, 3(9), 33–44.PubMedGoogle Scholar
  10. Buchanan, L. H., Counter, S. A., Ortega, F., & Laurell, G. (1999). Distortion product oto-acoustic emissions in Andean children and adults with chronic lead intoxication. Acta Oto-Laryngologica, 119(6), 652–658.PubMedGoogle Scholar
  11. Campo, P., Lataye, R., Cossec, B., & Placidi, V. (1997). Toluene-induced hearing loss: A mid-frequency location of the cochlear lesions. Neurotoxicology and Teratology, 19(2), 129–140.PubMedGoogle Scholar
  12. Campo, P., Loquet, G., Blachère, V., & Roure, M. (1999). Toluene and styrene: Intoxication route in the rat cochlea. Neurotoxicology and Teratology, 21(4), 427–434.PubMedGoogle Scholar
  13. Campo, P., Lataye, R., Loquet, G., & Bonnet, P. (2001). Styrene-induced hearing loss: A membrane insult. Hearing Research, 154(1–2), 170–180.PubMedGoogle Scholar
  14. Campo, P., Maguin, K., & Lataye, R. (2007). Effects of aromatic solvents on acoustic reflexes mediated by central auditory pathways. Toxicological Sciences, 99(2), 582–590.PubMedGoogle Scholar
  15. Campo, P., Maguin, K., Gabriel, S., Möller, A., Nies, E., Gomez, M. D. S., & Toppila, E. (2009). European Agency for Safety and Health at Work. Combined exposure to noise and ototoxic substances (60 pp.). Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  16. Cappaert, N. L., Klis, S. F., Baretta, A. B., Muijser, H., & Smoorenburg, G. F. (2000). Ethyl benzene-induced ototoxicity in rats: A dose-dependent mid-frequency hearing loss. Journal of the Association for Research in Otolaryngology, 1(3), 292–299.PubMedCentralPubMedGoogle Scholar
  17. Cappaert, N. L., Klis, S. F., Muijser, H., Kulig, B. M., & Smoorenburg, G. F. (2001). Simultaneous exposure to ethyl benzene and noise: Synergistic effects on outer hair cells. Hearing Research, 162(1–2), 67–79.PubMedGoogle Scholar
  18. Chang, S. J., Shih, T. S., Chou, T. C., Chen, C. J., Chang, H. Y., & Sung, F. C. (2003). Hearing loss in workers exposed to carbon disulfide and noise. Environmental Health Perspectives, 111(13), 1620–1624.PubMedCentralPubMedGoogle Scholar
  19. Chen, G. D., & Fechter, L. D. (1999). Potentiation of octave-band noise induced auditory impairment by carbon monoxide. Hearing Research, 132(1–2), 149–159.PubMedGoogle Scholar
  20. Chen, G. D., McWilliams, M. L., & Fechter, L. D. (1999). Intermittent noise-induced hearing loss and the influence of carbon monoxide. Hearing Research, 138(1–2), 181–191.PubMedGoogle Scholar
  21. Chen, G. D., Chi, L. H., Kostyniak, P. J., & Henderson, D. (2007). Styrene induced alterations in biomarkers of exposure and effects in the cochlea: Mechanisms of hearing loss. Toxicological Sciences, 98(1), 167–177.PubMedGoogle Scholar
  22. Crofton, K. M., & Zhao, X. (1993). Mid-frequency hearing loss in rats following inhalation exposure to trichloroethylene: Evidence from reflex modification audiometry. Neurotoxicology and Teratology, 15(6), 413–423.PubMedGoogle Scholar
  23. Crofton, K. M., & Zhao, X. (1997). The ototoxicity of trichloroethylene: Extrapolation and relevance of high-concentration, short-duration animal exposure data. Fundamental and Applied Toxicology, 38(1), 101–106.PubMedGoogle Scholar
  24. Crofton, K. M., Lassiter, T. L., & Rebert, C. S. (1994). Solvent-induced ototoxicity in rats: An atypical selective mid-frequency hearing deficit. Hearing Research, 80(1), 25–30.PubMedGoogle Scholar
  25. Dallos, P., Evans, B. N., & Hallworth, R. (1991). Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature, 350(6314), 155–157.PubMedGoogle Scholar
  26. Davis, R. R., Murphy, W. J., Snawder, J. E., Striley, C. A., Henderson, D., Khan, A., --Krieg, E.F. (2002). Susceptibility to the ototoxic properties of toluene is species specific. Hearing Research, 166(1–2), 24–32.PubMedGoogle Scholar
  27. Discalzi, G., Fabbro. D., Meliga, F., Mocellini, A., & Capellaro, F. (1993). Effects of occupational exposure to mercury and lead on brainstem auditory evoked potentials. International Journal of Psychophysiology, 14(1), 21–25.PubMedGoogle Scholar
  28. Evans, P., & Halliwell, B. (1999). Free radicals and hearing. Cause, consequence, and criteria. Annals of the New York Academy of Sciences, 884, 19–40.Google Scholar
  29. Farahat, T. M., Abdel-Rasoul, G. M., El-Assy, A. R., Kandil, S. H., & Kabil, M. K. (1997). Hearing thresholds of workers in a printing facility. Environmental Research, 73(2), 189–192.PubMedGoogle Scholar
  30. Fechter, L. D. (1989). A mechanistic basis for interactions between noise and chemical exposure. Archives of Complex Environmental Studies, 1(1), 23–28.Google Scholar
  31. Fechter, L. D., Thorne, P. R., & Nuttall A. L. (1987). Effects of carbon monoxide on cochlear electrophysiology and blood flow. Hearing Research, 27(1), 37–45.PubMedGoogle Scholar
  32. Fechter, L. D., Young, J. S., & Carlisle, L. (1988). Potentiation of noise induced threshold shifts and hair cell loss by carbon monoxide. Hearing Research, 34(1), 39–47.PubMedGoogle Scholar
  33. Fechter, L. D., Liu, Y, Herr, D. W., & Crofton, K. M. (1998). Trichloroethylene ototoxicity: Evidence for a cochlear origin. Toxicology Sciences, 42(1), 28–35.Google Scholar
  34. Fechter, L. D., Chen, G. D., Rao, D., & Larabee, J. (2000). Predicting exposure conditions that facilitate the potentiation of noise-induced hearing loss by carbon monoxide. Toxicological Sciences, 58(2), 315–323.PubMedGoogle Scholar
  35. Fechter, L. D., Chen, G. D., & Johnson, D. L. (2002). Potentiation of noise-induced hearing loss by low concentrations of hydrogen cyanide in rats. Toxicological Sciences, 66(1), 131–138.PubMedGoogle Scholar
  36. Fechter, L. D., Klis, S. F., Shirwany, N. A., Moore, T. G., & Rao, D. B. (2003). Acrylonitrile produces transient cochlear function loss and potentiates permanent noise-induced hearing loss. Toxicological Sciences, 75(1), 117–123.PubMedGoogle Scholar
  37. Fechter, L. D., Gearhart, C., & Shirwany, N. A. (2004). Acrylonitrile potentiates noise-induced hearing loss in rat. Journal of the Association for Research in Otolaryngology, 5(1), 90–98.PubMedCentralPubMedGoogle Scholar
  38. Fechter, L. D., Gearhart, C., Fulton, S., Campbell, J., Fisher, J., Na, K., Cocker, D., Nelson-Miller, A., Moon, P., & Pouyatos, B. (2007). JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Toxicological Sciences, 98(2), 510–525.PubMedGoogle Scholar
  39. Fuente, A., McPherson, B., Munoz, V., & Pablo Espina, J. (2006). Assessment of central auditory processing in a group of workers exposed to solvents. Acta Oto-Laryngologica, 126(11), 1188–1194.PubMedGoogle Scholar
  40. Gagnaire, F., & Langlais, C. (2005). Relative ototoxicity of 21 aromatic solvents. Archives of Toxicology, 79(6), 346–354.PubMedGoogle Scholar
  41. Gagnaire, F., Marignac, B., Langlais, C., & Bonnet, P. (2001). Ototoxicity in rats exposed to ortho-, meta- and para-xylene vapours for 13 weeks. Pharmacology and Toxicology, 89(1), 6–14.PubMedGoogle Scholar
  42. Gagnaire, F., Langlais, C., Grossmann, S., & Wild, P. (2007a). Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks. Archives of Toxicology, 81(2), 127–143.PubMedGoogle Scholar
  43. Gagnaire, F., Marignac, B., Blachere, V., Grossmann, S., & Langlais, C. (2007b). The role of toxicokinetics in xylene-induced ototoxicity in the rat and guinea pig. Toxicology, 231(2–3), 147–158.PubMedGoogle Scholar
  44. Halsey, K., Skjönsberg, A., Ulfendahl, M., & Dolan, D. F. (2005). Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity. Hearing Research, 201(1–2), 99–108.PubMedGoogle Scholar
  45. Hawkins, J. E. (1976). Drug ototoxicity. In W. D, Keidel & W. D. Neff (Eds.), Handbook of sensory physiology (Vol. V/3, pp. 707–748). Heidelberg: Springer-Verlag.Google Scholar
  46. Henderson, D., Bielefeld, E. C., Harris, K. C., & Hu, B. H. (2006). The role of oxidative stress in noise-induced hearing loss. Ear and Hearing, 27(1), 1–19.PubMedGoogle Scholar
  47. Hinshaw, H. C., & Feldman, W. H. (1945). Streptomycin in treatment of clinical tuberculosis: A preliminary report. Proceedings of Staff Meeting, Mayo Clinic, 20, 313.Google Scholar
  48. Hirata, M., Ogawa, Y., Okayama, A., & Goto, S. (1992). A cross-sectional study on the brainstem auditory evoked potential among workers exposed to carbon disulfide. International Archives of Occupational and Environmental Health, 64(5), 321–324.PubMedGoogle Scholar
  49. Humes, L. E. (1984). Noise-induced hearing loss as influenced by other agents and by some physical characteristics of the individual. Journal of the Acoustical Society of America, 76(5), 1318–1329.PubMedGoogle Scholar
  50. Hwang, Y. H., Chiang, H. Y., Yen-Jean, M. C., & Wang, J. D. (2009). The association between low levels of lead in blood and occupational noise-induced hearing loss in steel workers. The Science of the Total Environ, 408(1), 43–9.PubMedGoogle Scholar
  51. Johnson, A. C., & Canlon, B. (1994). Progressive hair cell loss induced by toluene exposure. Hearing Research, 75(1–2), 201–208.PubMedGoogle Scholar
  52. Johnson, A. C., & Morata, T. C. (2010). Occupational exposure to chemicals and hearing impairment. The Nordic Expert Group for Criteria Documentation of Health Risks of Chemicals, Nordic Expert Group. Arbete och Hälsa, 44(4), 1–177.Google Scholar
  53. Johnson, A. C., Morata, T. C., Lindblad, A. C., Nylén, P. R., Svensson, E. B., Krieg, E., Aksentijevic, A., & Prasher, D. (2006). Audiological findings in workers exposed to styrene alone or in concert with noise. Noise and Health, 8(3), 45–57.PubMedGoogle Scholar
  54. Kopke, R., Allen, K. A., Henderson, D., Hoffer, M., Frenz, D., & Van de Water, T. (1999). A radical demise. Toxins and trauma share common pathways in hair cell death. Annals of the New York Academy Sciences, 884, 171–191.Google Scholar
  55. Lacerda, A. B. M. (2007). Effets de l’exposition chronique au monoxyde de carbone et au bruit sur l’audition. Montréal, Canada: Faculté des études supérieures de l’Université de Montréal, (Doctoral thesis in French).Google Scholar
  56. Lacerda, A., Leroux, T., & Gagne, J. P. (2005). Noise and carbon monoxide exposure increases hearing loss in workers. In Proceedings of the 149th meeting of the Acoustical Society of America, Vancouver, Canada, May 16–20.Google Scholar
  57. Lasky, R. E., Maier, M. M., Snodgrass, E. B., Hecox, K. E., & Laughlin, N. K. (1995). The effects of lead on otoacoustic emissions and auditory evoked potentials in monkeys. Neurotoxicology and Teratology, 17(6), 633–644.PubMedGoogle Scholar
  58. Lasky, R. E., Luck, M. L., Torre, P, 3 rd & Laughlin, N. (2001). The effects of early lead exposure on auditory function in rhesus monkeys. Neurotoxicology and Teratology, 23(6), 639–649.PubMedGoogle Scholar
  59. Lataye, R., Campo, P., & Loquet, G. (2000). Combined effects of noise and styrene exposure on hearing function in the rat. Hearing Research, 139(1–2), 86–96.PubMedGoogle Scholar
  60. Lataye, R., Campo, P., Barthelemy, C., Loquet, G., & Bonnet, P. (2001). Cochlear pathology induced by styrene. Neurotoxicology and Teratology, 23(1), 71–79.PubMedGoogle Scholar
  61. Lataye, R., Campo, P., Pouyatos, B., Cossec, B., Blachere, V., & Morel, G. (2003). Solvent ototoxicity in the rat and guinea pig. Neurotoxicology and Teratology, 25(1), 39–50.PubMedGoogle Scholar
  62. Lataye, R., Campo, P., Loquet, G., & Morel, G. (2005). Combined effects of noise and styrene on hearing: Comparison between active and sedentary rats. Noise and Health, 7(27), 49–64.PubMedGoogle Scholar
  63. Lataye, R., Maguin, K., & Campo, P. (2007). Increase in cochlear microphonic potential after toluene administration. Hearing Research, 230(1–2), 34–42.PubMedGoogle Scholar
  64. Laukli, E., & Hansen, P. W. (1995). An audiometric test battery for the evaluation of occupational exposure to industrial solvents. Acta Oto-Laryngologica, 115(2), 162–164.PubMedGoogle Scholar
  65. Laurell, G., & Jungelius, U. (1990). High-dose cisplatin treatment: Hearing loss and plasma concentrations. Laryngoscope, 100(7), 724–734.PubMedGoogle Scholar
  66. Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., & Miller, J. M. (2007). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research, 226(1–2), 22–43.PubMedCentralPubMedGoogle Scholar
  67. Le Prell, C. G., Hensley, B. N., Campbell, K. C. M., Hall, J. W. III, & Guire, K. (2011). Evidence of hearing loss in a “normally-hearing” college-student population. International Journal of Audiology, 50(Supplement 1), S21–31.PubMedCentralPubMedGoogle Scholar
  68. Lehnhardt, E. (1965). [Occupational injuries to the ear]. Archiv für Ohren-, Nasen- und Kehlkopfheilkund, vereinigt mit Zeitschrift für Hals-, Nasen- und Ohrenheilkunde, 185, 1–242 (in German).Google Scholar
  69. Leroux, T., Lacerda, A., & Gagne, J. P. (2008). Auditory effects of chronic exposure to carbon monoxide and noise among workers. In: Proceedings of the 9th International Congress on Noise as a Public Health Problem (ICBEN), Foxwood, Connecticut, July 21–25, 2008.Google Scholar
  70. Lilienthal, H., & Winneke, G. (1996). Lead effects on the brain stem auditory evoked potential in monkeys during and after the treatment phase. Neurotoxicology and Teratology, 18(1), 17–32.PubMedGoogle Scholar
  71. Liu, Y., & Fechter, L. D. (1997). Toluene disrupts outer hair cell morphometry and intracellular calcium homeostasis in cochlear cells of guinea pigs. Toxicology and Applied Pharmacology, 142(2), 270–277.PubMedGoogle Scholar
  72. Loquet, G., Campo, P., & Lataye, R. (1999). Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicology and Teratology, 21(4), 689–697.PubMedGoogle Scholar
  73. Loquet, G., Campo, P., Lataye, R., Cossec, B., & Bonnet, P. (2000). Combined effects of exposure to styrene and ethanol on the auditory function in the rat. Hearing Research, 148(1–2), 173–180.PubMedGoogle Scholar
  74. Lumio, J. S. (1948). Hearing deficiencies caused by carbon monoxide (generator gas). Acta Oto-Laryngologica, 71(Supplement), 1–112.Google Scholar
  75. Lund, S. P., & Kristiansen, G. B. (2004). Studies on the auditory effects of combined exposures to noise, toluene, and carbon monoxide. Noise and industrial chemicals: Interaction effects on hearing and balance (pp. 56–76). NoiseChem. Key Action 4: Environmental and Health 2001–2004, Final Report.Google Scholar
  76. Lund, S. P., & Kristiansen, G. B. (2008). Hazards to hearing from combined exposure to toluene and noise in rats. International Journal for Occupational Medicine and Environmental Health, 21(1), 47–57.Google Scholar
  77. Maguin, K., Lataye, R., Campo, P., Cossec, B., Burgart, M., & Waniusiow, D. (2006). Ototoxicity of the three xylene isomers in the rat. Neurotoxicology and Teratology, 28(6), 648–656.PubMedGoogle Scholar
  78. Maguin, K., Campo, P., & Parietti-Winkler, C. (2009). Toluene can perturb the neuronal voltage-dependent Ca2+ channels involved in the middle-ear reflex. Toxicological Sciences, 107(2), 473–481.PubMedGoogle Scholar
  79. Mäkitie, A., Pirvola, U., Pyykkö, I., Sakakibara, H., Riihimäki, V., & Ylikoski, J. (2002). Functional and morphological effects of styrene on the auditory system of the rat. Archives of Toxicology, 76(1), 40–47.PubMedGoogle Scholar
  80. Mäkitie, A.A., Pirvola, U., Pyykkö, I., Sakakibara, H., Riihimäki, V., & Ylikoski, J. (2003). The ototoxic interaction of styrene and noise. Hearing Research, 179(1–2), 9–20.PubMedGoogle Scholar
  81. Mascagni, P., Formenti, C., Pettazzoni, M., Feltrin, G., & Toffoletto, F. (2007). [Hearing function and solvent exposure: Study of a worker population exposed to styrene]. Giornale Italiano di Medicina de Lavoro ed Ergonomia, 29(3 Supplement), 277–279 (in Italian with English abstract).Google Scholar
  82. Möller, C., Ödkvist, L. M., Thell, J., Larsby, B., Hyden, D., Bergholtz, L. M., & Tham, R. (1989). Otoneurological findings in psycho-organic syndrome caused by industrial solvent exposure. Acta Oto-Laryngologica, 107(1), 5–12.PubMedGoogle Scholar
  83. Morata, T. C. (1989). Study of the effects of simultaneous exposure to noise and carbon disulfide on workers’ hearing. Scandinavian Audiology, 18(1), 53–58.PubMedGoogle Scholar
  84. Morata, T.C., Fiorini, A.C., Fischer, F.M., Colacioppo, S., Wallingford, K.M., Krieg, E.F., Dunn, D.E., Gozzoli, L., Padrão, M.A., & Cesar, C.L. (1997). Toluene-induced hearing loss among rotogravure printing workers. Scandinavian Journal of Work Environment and Health, 23(4), 289–98.PubMedGoogle Scholar
  85. Morata, T. C., Johnson, A. C., Nylén, P., Svensson, E. B., Cheng, J., Krieg, E. F., Lindblad, A. C., Ernstgård, L., & Franks, J. (2002). Audiometric findings in workers exposed to low levels of styrene and noise. Journal of Occupational and Environmental Medicine, 44(9), 806–814.PubMedGoogle Scholar
  86. Morioka, I., Kuroda, M., Miyashita, K., & Takeda, S. (1999). Evaluation of organic solvent ototoxicity by the upper limit of hearing. Archives of Environmental Health, 54(5), 341–346.PubMedGoogle Scholar
  87. Morioka, I., Miyai, N., Yamamoto, H., & Miyashita, K. (2000). Evaluation of combined effect of organic solvents and noise by the upper limit of hearing. Industrial Health, 38(2), 252–257.PubMedGoogle Scholar
  88. Muijser, H., Lammers, J. H., & Kullig, B. M. (2000). Effects of exposure to trichloroethylene and noise on hearing in rats. Noise and Health, 2(1), 57–66.PubMedGoogle Scholar
  89. Osman, K., Pawlas, K., Schutz, A., Gazdzik, M., Sokal, J. A., & Vahter, M. (1999). Lead exposure and hearing effects in children in Katowice, Poland. Environmental Research, 80(1), 1–8.PubMedGoogle Scholar
  90. Otto, D. A., & Fox, D. A. (1993). Auditory and visual dysfunction following lead exposure. Neurotoxicology, 14(2–3), 191–207.PubMedGoogle Scholar
  91. Pouyatos, B., Campo, P., & Lataye, R. (2005a). Influence of age on noise- and styrene-induced hearing loss in the Long-Evans rat. Environmental Toxicology and Pharmacology, 19(3), 561–570.PubMedGoogle Scholar
  92. Pouyatos, B., Gearhart, C. A., & Fechter, L. D. (2005b). Acrylonitrile potentiates hearing loss and cochlear damage induced by moderate noise exposure in rats. Toxicology and Applied Pharmacology, 204(1), 46–56.PubMedGoogle Scholar
  93. Pouyatos, B., Gearhart, C., Nelson-Miller, A., Fulton, S., & Fechter, L. (2007). Oxidative stress pathways in the potentiation of noise-induced hearing loss by acrylonitrile. Hearing Research, 224(1–2), 61–74.PubMedGoogle Scholar
  94. Prosen, C. A., & Stebbins, W. C. (1980). Ototoxicity. In P. S. Spencer, & H. H. Schaumburg (Eds.), Experimental and clinical neurotoxicology (pp. 62–76). Baltimore: Williams & Wilkins.Google Scholar
  95. Pryor, G. T., Rebert, C. S., Dickinson, J., & Feeney, E. M. (1984). Factors affecting toluene-induced ototoxicity in rats. Neurobehavioral Toxicology and Teratology, 6(3), 223–238.PubMedGoogle Scholar
  96. Rao, D., & Fechter, L. D. (2000a). Protective effects of phenyl-N-tert-butylnitrone on the potentiation of noise-induced hearing loss by carbon monoxide. Toxicology and Applied Pharmacology, 167(2), 125–131.PubMedGoogle Scholar
  97. Rao, D. B., & Fechter, L. D. (2000b). Increased noise severity limits potentiation of noise induced hearing loss by carbon monoxide. Hearing Research, 150(1–2), 206–214.PubMedGoogle Scholar
  98. Rebert, C. S., Day, V. L., Matteucci, M. J., & Pryor, G. T. (1991). Sensory-evoked potentials in rats chronically exposed to trichloroethylene: Predominant auditory dysfunction. Neurotoxicology and Teratology, 13(1), 83–90.PubMedGoogle Scholar
  99. Rice, D. C. (1997). Effects of lifetime lead exposure in monkeys on detection of pure tones. Fundamental and Applied Toxicology, 36(2), 112–118.PubMedGoogle Scholar
  100. Rice, D. C., & Gilbert, S. G. (1992). Exposure to methyl mercury from birth to adulthood impairs high-frequency hearing in monkeys. Toxicology and Applied Pharmacology, 115(1), 6–10.PubMedGoogle Scholar
  101. Schacht, J., & Hawkins, J. E. (2006). Sketches of otohistory. Part 11. Ototoxicity: Drug-induced hearing loss. Audiology and Neurootology, 11(1), 1–6.Google Scholar
  102. Schwartz, J., & Otto, D. (1987). Blood lead, hearing thresholds, and neurobehavioral development in children and youth. Archives of Environmental Health, 42(3), 153–160.PubMedGoogle Scholar
  103. Schwartz, J., & Otto, D. (1991). Lead and minor hearing impairment. Archives of Environmental Health, 46(5), 300–305.PubMedGoogle Scholar
  104. Schäper, M., Demes, P., Zupanic, M., Blaszkewicz, M., & Seeber, A. (2003). Occupational toluene exposure and auditory function: Results from a follow-up study. Annals of Occupational Hygiene, 47(6), 493–502.PubMedGoogle Scholar
  105. Śliwińska-Kowalska, M., Zamyslowska-Szmytke, E., Szymczak, W., Kotylo, P., Fiszer, M., Wesolowski, W., & Pawlaczyk-Luszcynska, M. (2003). Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. Journal of Occupational and Environmental Medicine, 45(1), 15–24.PubMedGoogle Scholar
  106. Sullivan, M. J., Rarey, K. E., & Conolly, R. B. (1988). Ototoxicity of toluene in rats. Neurotoxicology and Teratology, 10(6), 525–530.PubMedGoogle Scholar
  107. Toppila, E., Pyykkö, I., Starck, J., Kaksonen, R., & Ishizaki, H. (2000). Individual risk factors in the development of noise-induced hearing loss. Noise Health, 2(8), 59–70.PubMedGoogle Scholar
  108. Vrca, A., Karacic, V., Bozicevic, D., Bozikov, V., & Malinar, M. (1996). Brainstem auditory evoked potentials in individuals exposed to long-term low concentrations of toluene. American Journal of Industrial Medicine, 30(1), 62–66.PubMedGoogle Scholar
  109. Wu, T. N., Shen, C. Y., Lai, J. S., Goo, C. F., Ko, K. N., Chi, H. Y., Chang, P. Y., & Liou, S. H. (2000). Effects of lead and noise exposures on hearing ability. Archives of Environmental Health, 55(2), 109–114.PubMedGoogle Scholar
  110. Yamamura, K., Terayama, K., Yamamoto, N., Kohyama, A., & Kishi, R. (1989). Effects of acute lead acetate exposure on adult guinea pigs: Electrophysiological study of the inner ear. Fundamental and Applied Toxicology, 13(3), 509–515.PubMedGoogle Scholar
  111. Yamane, H., Nakai, Y., Takayama, M., Iguchi, H., Nakagawa, T., & Kojima, A. (1995). Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. European Archives of Oto-rhino-laryngology, 252(8), 504–508.PubMedGoogle Scholar
  112. Young, J. S., Upchurch, M. B., Kaufman, M. J., & Fechter, L. D. (1987). Carbon monoxide exposure potentiates high-frequency auditory threshold shifts induced by noise. Hearing Research, 26(1), 37–43.PubMedGoogle Scholar
  113. Ödkvist, L. M., Arlinger, S. D., Edling, C., Larsby, B., & Bergholtz, L. M. (1987). Audiological and vestibulo-oculomotor findings in workers exposed to solvents and jet fuel. Scandinavian Audiology, 16(1), 75–81.PubMedGoogle Scholar
  114. Ödkvist, L. M., Möller, C., & Thuomas, K. A. (1992). Otoneurologic disturbances caused by solvent pollution. Otolaryngology Head and Neck Surgery, 106(6), 687–692.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National Institute for Occupational Safety and HealthCincinnatiUSA
  2. 2.Karolinska InstitutetStockholmSweden

Personalised recommendations