Advertisement

Synaptic Mechanisms of Coincidence Detection

  • Katrina M. MacLeod
  • Catherine E. Carr
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 41)

Abstract

Localization of sounds in space is a capability crucial to an animal’s survival in a world full of predators, scarce of prey, and with heavy selection pressures for mates. For neuroscientists, sound localization offers an opportunity to ask precise questions relating sensory stimuli to their neural representation and the computation of sensory percepts. Both monaural and binaural cues are used to generate a sense of auditory spatial location, but the most thorough analysis of localization has focused on the use of binaural temporal cues. The study of the binaural cues allows the investigation of the neural mechanisms of sensory integration as the brain combines information from the left and right ears. The field has been enriched by studying animals that have highly developed capabilities to localize sound, such as the barn owl (Tyto alba), which hunts its prey in complete darkness (Payne 1971; Konishi 1973a, b). When combined with cellular and anatomical studies in the chicken and several other avian species, a remarkable confluence of evidence has emerged to reveal the synaptic and biophysical mechanisms that combine to create specialized brainstem neural circuits that perform coincidence detection on the temporal information and encode sound location, as described in this chapter.

Keywords

Cochlear Nucleus Interaural Time Difference Coincidence Detection Nucleus Magnocellularis Nucleus Laminaris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors received support for their work from the National Institutes of Health grants R01DC000436 (C.E.C.) and R03DC007972 (K.M.M.) and a grant from the National Organization for Hearing Research (K.M.M.) The authors thank C. Köppl and H. Kuba for helpful comments on the manuscript.

References

  1. Abbott, L. F., & Regehr, W. G. (2004). Synaptic computation. Nature, 431(7010), 796–803.PubMedGoogle Scholar
  2. Agmon-Snir, H., Carr, C. E., & Rinzel, J. (1998). The role of dendrites in auditory coincidence detection. Nature, 393(6682), 268–272.PubMedGoogle Scholar
  3. Ashida, G., Abe, K., Funabiki, K., & Konishi, M. (2007). Passive soma facilitates submillisecond coincidence detection in the owl’s auditory system. Journal of Neurophysiology, 97(3), 2267–2282.PubMedGoogle Scholar
  4. Bala, A. D., & Takahashi, T. T. (2000). Pupillary dilation response as an indicator of auditory discrimination in the barn owl. Journal of Comparative Physiology [A], 186(5), 425–434.Google Scholar
  5. Batra, R., & Yin, T. C. (2004). Cross correlation by neurons of the medial superior olive: A reexamination. JARO: Journal of the Association for Research Otolaryngology, 5(3), 238–252.Google Scholar
  6. Batra, R., Kuwada, S., & Fitzpatrick, D. C. (1997). Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. Journal of Neurophysiology, 78(3), 1222–1236.PubMedGoogle Scholar
  7. Beckius, G. E., Batra, R., & Oliver, D. L. (1999). Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: Observations related to delay lines. Journal of Neuroscience, 19(8), 3146–3161.PubMedGoogle Scholar
  8. Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417(6888), 543–547.PubMedGoogle Scholar
  9. Brenowitz, S., & Trussell, L. O. (2001). Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. Journal of Neuroscience, 21(23), 9487–9498.PubMedGoogle Scholar
  10. Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K  +  conductances with complementary functions in postsynaptic integration at a central auditory synapse. Journal of Neuroscience, 15(12), 8011–8022.PubMedGoogle Scholar
  11. Burger, R. M., & Rubel, E. W. (2008). Encoding of interaural timing for binaural hearing. In P. Dallos & D. Oertel (Eds.), The Senses: A Comprehensive Reference (pp 613–630). San Diego: Academic Press.Google Scholar
  12. Burger, R. M., Cramer, K. S., Pfeiffer, J. D., & Rubel, E. W. (2005). Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. Journal of Comparative Neurology, 481(1), 6–18.PubMedGoogle Scholar
  13. Cao, X. J., McGinley, M. J., & Oertel, D. (2008). Connections and synaptic function in the posteroventral cochlear nucleus of deaf jerker mice. Journal of Comparative Neurology, 510(3), 297–308.PubMedGoogle Scholar
  14. Carr, C. E., & Boudreau, R. E. (1993a). An axon with a myelinated initial segment in the bird auditory system. Brain Research, 628, 330–334.PubMedGoogle Scholar
  15. Carr, C. E., & Boudreau, R. E. (1993b). Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: Encoding and measuring interaural time differences. Journal of Comparative Neurology, 334(3), 337–355.PubMedGoogle Scholar
  16. Carr, C. E., & Code, R. A. (2000). The central auditory system of reptiles and birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing: Birds and Reptiles (pp 197–248). New York: Springer.Google Scholar
  17. Carr, C. E., & Konishi, M. (1988). Axonal delay lines for time measurement in the owl’s brainstem. Proceedings of the National Academy of Sciences of the United States of America, 85(21), 8311–8315.PubMedGoogle Scholar
  18. Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brainstem of the barn owl. Journal of Neuroscience, 10, 3227–3246.PubMedGoogle Scholar
  19. Carr, C. E., & Soares, D. (2002). Evolutionary convergence and shared computational principles in the auditory system. Brain, Behavior and Evolution, 59(5–6), 294–311.PubMedGoogle Scholar
  20. Carr, C., Heiligenberg, W., & Rose, G. (1986a). A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. Journal of Neuroscience, 6, 107–119.PubMedGoogle Scholar
  21. Carr, C. E., Maler, L., & Taylor, B. (1986b). A time comparison circuit in the electric fish midbrain. II. Functional morphology. Journal of Neuroscience, 6, 1372–1383.PubMedGoogle Scholar
  22. Carr, C. E., Fujita, I., & Konishi, M. (1989). Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. Journal of Comparative Neurology, 286(2), 190–207.PubMedGoogle Scholar
  23. Carr, C. E., Kubke, M. F., Massoglia, D. P., Cheng, S. M., Rigby, L. L., & Moiseff, A. (1997). Development of temporal coding circuits in the barn owl. In A. R. Palmer, A. Rees, Q. Summerfield, & R. Meddis (Eds.), Psychophysical and Physiological Advances in Hearing (pp 344–351). London: Whurr.Google Scholar
  24. Carr, C. E., Soares, D., Parameshwaran, S., & Perney, T. (2001). Evolution and development of time coding systems. Current Opinion in Neurobiology, 11(6), 727–733.PubMedGoogle Scholar
  25. Carr, C., Soares, D., Simon, J., & Smolders, J. (2009). Detection of interaural time differences in the alligator. Journal of Neuroscience, 29(25), 7978–7990.PubMedGoogle Scholar
  26. Colburn, H. S., Han, Y. A., & Culotta, C. P. (1990). Coincidence model of MSO responses. Hearing Research, 49(1–3), 335–346.PubMedGoogle Scholar
  27. Cook, D. L., Schwindt, P. C., Grande, L. A., & Spain, W. J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.PubMedGoogle Scholar
  28. Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacology Reviews and Communications, 51(1), 7–61.Google Scholar
  29. Edwards, D. H., Yeh, S. R., & Krasne, F. B. (1998). Neuronal coincidence detection by voltage-sensitive electrical synapses. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7145–7150.PubMedGoogle Scholar
  30. Fettiplace, R., & Fuchs, P. A. (1999). Mechanisms of hair cell tuning. Annual Review of Physiology, 61, 809–834.PubMedGoogle Scholar
  31. Fischer, B. J., Christianson, G. B., & Pena, J. L. (2008). Cross-correlation in the auditory coincidence detectors of owls. Journal of Neuroscience, 28(32), 8107–8115.PubMedGoogle Scholar
  32. Fukui, I., & Ohmori, H. (2003). Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken. Journal of Physiology (London), 548(Pt. 1), 219–232.Google Scholar
  33. Funabiki, K., Koyano, K., & Ohmori, H. (1998). The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. Journal of Physiology (London), 508(3), 851–869.Google Scholar
  34. Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.PubMedGoogle Scholar
  35. Goldberg, J. M., & Brown, P. B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.PubMedGoogle Scholar
  36. Grau-Serrat, V., Carr, C. E., & Simon, J. Z. (2003). Modeling coincidence detection in nucleus laminaris. Biological Cybernetics, 89(5), 388–396.PubMedGoogle Scholar
  37. Grigg, J. J., Brew, H. M., & Tempel, B. L. (2000). Differential expression of voltage-gated potassium channel genes in auditory nuclei of the mouse brainstem. Hearing Research, 140(1–2), 77–90.PubMedGoogle Scholar
  38. Grun, S., Aertsen, A., Wagner, H., & Carr, C. (1992). Binaural interaction in the nucleus laminaris of the barn owl: A quantitative model. BrainWorks v1991-01, http://www.brainworks.uni-freiburg.de, Albert-Ludwigs-University, Freiburg.
  39. Han, Y., & Colburn, H. S. (1993). Point-neuron model for binaural interaction in MSO. Hearing Research, 68(1), 115–130.PubMedGoogle Scholar
  40. Hancock, K. E., & Delgutte, B. (2004). A physiologically based model of interaural time difference discrimination. Journal of Neuroscience, 24(32), 7110–7117.PubMedGoogle Scholar
  41. Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: Regulation by the slow afterhyperpolarization conductance. Journal of Neuroscience, 26(34), 8787–8799.PubMedGoogle Scholar
  42. Hyson, R. L., Reyes, A. D., & Rubel, E. W. (1995). A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Research, 677(1), 117–126.PubMedGoogle Scholar
  43. Jeffress, L. (1948). A place theory of sound localization. Journal of Comparative Physiology and Psychology, 41, 35–39.Google Scholar
  44. Jhaveri, S., & Morest, D. K. (1982). Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: A Golgi study. Neuroscience, 7(4), 837–853.PubMedGoogle Scholar
  45. Joris, P., & Yin, T. C. (2007). A matter of time: Internal delays in binaural processing. Trends in Neurosciences, 30(2), 70–78.PubMedGoogle Scholar
  46. Joris, P. X., Smith, P. H., & Yin, T. C. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21(6), 1235–1238.PubMedGoogle Scholar
  47. Joseph, A. W., & Hyson, R. L. (1993). Coincidence detection by binaural neurons in the chick brain stem. Journal of Neurophysiology, 69(4), 1197–1211.PubMedGoogle Scholar
  48. Kawasaki, M. (1993). Independently evolved jamming avoidance responses employ identical computational algorithms: A behavioral study of the African electric fish, Gymnarchus niloticus. Journal of Comparative Physiology [A], 173(1), 9–22.Google Scholar
  49. Klump, G. M. (2000). Sound localization in birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing: Birds and Reptiles (pp. 249–307). New York: Springer.Google Scholar
  50. Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature, 417(6886), 322–328.PubMedGoogle Scholar
  51. Knudsen, E. I., & Konishi, M. (1978a). A neural map of auditory space in the owl. Science, 200, 795–797.PubMedGoogle Scholar
  52. Knudsen, E. I., & Konishi, M. (1978b). Space and frequency are represented separately in the auditory midbrain of the owl. Journal of Neurophysiology, 41, 870–884.PubMedGoogle Scholar
  53. Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.Google Scholar
  54. Konishi, M. (1973a). How the owl tracks its prey. American Scientist, 61, 414–424.Google Scholar
  55. Konishi, M. (1973b). Locatable and nonlocatable acoustic signals for barn owls. American Naturalist, 107, 775–785.Google Scholar
  56. Konishi, M. (1993). Listening with two ears. Scientific American, 268(4), 66–73.PubMedGoogle Scholar
  57. Köppl, C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17(9), 3312–3321.PubMedGoogle Scholar
  58. Köppl, C. (2009). Evolution of sound localisation in land vertebrates. Current Biology, 19(15), R635–639.PubMedGoogle Scholar
  59. Köppl, C., & Carr, C. E. (2008). Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biological Cybernetics, 98(6), 541–559.PubMedGoogle Scholar
  60. Kuba, H. (2007). Cellular and molecular mechanisms of avian auditory coincidence detection. Neuroscience Research, 59(4), 370–376.PubMedGoogle Scholar
  61. Kuba, H., Koyano, K., & Ohmori, H. (2002a). Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken. Journal of Physiology (London), 540(Pt. 2), 529–542.Google Scholar
  62. Kuba, H., Koyano, K., & Ohmori, H. (2002b). Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. European Journal of Neuroscience, 15(6), 984–990.PubMedGoogle Scholar
  63. Kuba, H., Yamada, R., & Ohmori, H. (2003). Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken. Journal of Physiology (London), 552(Pt. 2), 611–620.Google Scholar
  64. Kuba, H., Yamada, R., Fukui, I., & Ohmori, H. (2005). Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. Journal of Neuroscience, 25(8), 1924–1934.PubMedGoogle Scholar
  65. Kuba, H., Ishii, T., & Ohmori, H. (2006). Axonal site of spike initiation enhances auditory coincidence detection. Nature, 444, 1069–1072.PubMedGoogle Scholar
  66. Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075–1078.PubMedGoogle Scholar
  67. Kubke, M. F., & Carr, C. E. (2000). Development of the auditory brainstem of birds: Comparison between barn owls and chickens. Hearing Research 147(1–2), 1–20.PubMedGoogle Scholar
  68. Kubke, M. F., & Carr, C. E. (2005). Development of sound localization. In A. N. Popper & R. Fay (Eds.), Sound Source Localization, 179–237 New York: Springer.Google Scholar
  69. Kubke, M. F., Gauger, B., Basu, L., Wagner, H., & Carr, C. E. (1999). Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto alba). Journal of Comparative Neurology, 415(2), 189–203.PubMedGoogle Scholar
  70. Kubke, M. F., Massoglia, D. P., & Carr, C. E. (2002). Developmental changes underlying the formation of the specialized time coding circuits in barn owls (Tyto alba). Journal of Neuroscience, 22(17), 7671–7679.PubMedGoogle Scholar
  71. Kubke, M. F., Massoglia, D. P., & Carr, C. E. (2004). Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain, Behavior and Evolution, 63(3), 169–180.PubMedGoogle Scholar
  72. Kuo, S. P., Bradley, L. A., & Trussell, L. O. (2009). Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem. Journal of Neuroscience, 29(30), 9625–9634.PubMedGoogle Scholar
  73. Lachica, E. A., Rubsamen, R., & Rubel, E. W. (1994). GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. Journal of Comparative Neurology, 348(3), 403–418.PubMedGoogle Scholar
  74. Levin, M. D., Kubke, M. F., Schneider, M., Wenthold, R., & Carr, C. E. (1997). Localization of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. Journal of Comparative Neurology, 378(2), 239–253.PubMedGoogle Scholar
  75. Lippe, W., & Rubel, E. W. (1983). Development of the place principle: Tonotopic organization. Science, 219(4584), 514–516.PubMedGoogle Scholar
  76. Lu, T., & Trussell, L. O. (2001). Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. Journal of Physiology (London), 535(Pt. 1), 125–131.Google Scholar
  77. MacLeod, K. M., & Carr, C. E. (2007). Beyond timing in the auditory brainstem: Intensity coding in the avian cochlear nucleus angularis. Progress in Brain Research, 165, 123–133.PubMedGoogle Scholar
  78. MacLeod, K. M., Soares, D., & Carr, C. E. (2006). Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). Journal of Comparative Neurology, 495(2), 185–201.PubMedGoogle Scholar
  79. MacLeod, K. M., Horiuchi, T. K., & Carr, C. E. (2007). A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. Journal of Neurophysiology, 97(4), 2863–2874.PubMedGoogle Scholar
  80. Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11(9), 2865–2880.PubMedGoogle Scholar
  81. Marsalek, P., Koch, C., & Maunsell, J. (1997). On the relationship between synaptic input and spike output jitter in individual neurons. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 735–740.PubMedGoogle Scholar
  82. Matsushita, A., & Kawasaki, M. (2004). Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. Journal of Comparative Neurology, 472, 140–155.PubMedGoogle Scholar
  83. McAlpine, D., & Grothe, B. (2003). Sound localization and delay lines – do mammals fit the model? Trends in Neurosciences, 26(7), 347–350.PubMedGoogle Scholar
  84. McAlpine, D., Jiang, D., & Palmer, A. R. (2001). A neural code for low-frequency sound localization in mammals. Nature Neuroscience, 4(4), 396–401.PubMedGoogle Scholar
  85. Mittmann, W., Koch, U., & Hausser, M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. Journal of Physiology (London), 563(Pt. 2), 369–378.Google Scholar
  86. Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial receptive fields Journal of Neuroscience, 3, 2553–2562.PubMedGoogle Scholar
  87. Monsivais, P., Yang, L., & Rubel, E. W. (2000). GABAergic inhibition in nucleus magnocellularis: Implications for phase locking in the avian auditory brainstem. Journal of Neuroscience, 20(8), 2954–2963.PubMedGoogle Scholar
  88. Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.PubMedGoogle Scholar
  89. Nishino, E., Yamada, R., Kuba, H., Hioki, H., Furuta, T., Kaneko, T., & Ohmori, H. (2008). Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. Journal of Neuroscience, 28(28), 7153–7164.PubMedGoogle Scholar
  90. Oertel, D. (1991). The role of intrinsic neuronal properties in the encoding of auditory information in the cochlear nuclei. Current Opinion in Neurobiology, 1(2), 221–228.PubMedGoogle Scholar
  91. Oertel, D. (1999). The role of timing in the brain stem auditory nuclei of vertebrates. Annual Review of Physiology, 61, 497–519.PubMedGoogle Scholar
  92. Overholt, E. M., Rubel, E. W., & Hyson, R. L. (1992). A circuit for coding interaural time differences in the chick brainstem. Journal of Neuroscience, 12(5), 1698–1708.PubMedGoogle Scholar
  93. Parameshwaran, S., Carr, C. E., & Perney, T. M. (2001). Expression of the Kv3.1 potassium channel in the avian auditory brainstem. Journal of Neuroscience, 21(2), 485–494.PubMedGoogle Scholar
  94. Parameshwaran-Iyer, S., Carr, C. E., & Perney, T. M. (2003). Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during development. Journal of Neurobiology, 55(2), 165–178.PubMedGoogle Scholar
  95. Parks, T. N. (2000). The AMPA receptors of auditory neurons. Hearing Research, 147(1–2), 77–91.PubMedGoogle Scholar
  96. Parks, T. N., & Rubel, E. W. (1975). Organization and development of brain stem auditory nucleus of the chicken: Organization of projections from N. magnocellularis to N. laminaris. Journal of Comparative Neurology, 164, 435–448.PubMedGoogle Scholar
  97. Payne, R. (1971). Acoustic localization of prey by barn owls (Tyto alba). Journal of Experimental Biology, 54, 535–573.PubMedGoogle Scholar
  98. Pecka, M., Brand, A., Behrend, O., & Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. Journal of Neuroscience, 28(27), 6914–6925.PubMedGoogle Scholar
  99. Pena, J. L., Viete, S., Albeck, Y., & Konishi, M. (1996). Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. Journal of Neuroscience, 16(21), 7046–7054.PubMedGoogle Scholar
  100. Pena, J. L., Viete, S., Funabiki, K., Saberi, K., & Konishi, M. (2001). Cochlear and neural delays for coincidence detection in owls. Journal of Neuroscience, 21(23), 9455–9459.PubMedGoogle Scholar
  101. Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. Journal of Neuroscience, 14(8), 4998–5010.PubMedGoogle Scholar
  102. Ramon y Cajal, S. (1908). Les ganlions terminaux du nerf acoustique des oiseaux.Trabajos del Instituto Cajal de investigaciones biológicas, 6, 195–225.Google Scholar
  103. Rathouz, M., & Trussell, L. (1998). Characterization of outward currents in neurons of the avian nucleus magnocellularis. Journal of Neurophysiology, 80(6), 2824–2835.PubMedGoogle Scholar
  104. Reyes, A. D., Rubel, E. W., & Spain, W. J. (1994). Membrane properties underlying the firing of neurons in the avian cochlear nucleus. Journal of Neuroscience, 14(9), 5352–5364.PubMedGoogle Scholar
  105. Reyes, A. D., Rubel, E. W., & Spain, W. J. (1996). In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. Journal of Neuroscience, 16(3), 993–1007.PubMedGoogle Scholar
  106. Rubel, E. W., & Parks, T. N. (1975). Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of n. magnocellularis and n. laminaris. Journal of Comparative Neurology, 164(4), 411–434.PubMedGoogle Scholar
  107. Schneggenburger, R., & Forsythe, I. D. (2006). The calyx of Held. Cell and Tissue Research, 326(2), 311–337.PubMedGoogle Scholar
  108. Schwartzkopff, J., & Winter, P. (1960). Zur Anatomie der Vogel-Cochlea unter naturlichen Bedingungen. Biologisches Zentralblatt, 79, 607–625.Google Scholar
  109. Scott, L. L., Mathews, P. J., & Golding, N. L. (2005). Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. Journal of Neuroscience, 25(35), 7887–7895.PubMedGoogle Scholar
  110. Simon, J. Z., Carr, C. E., & Shamma, S. A. (1999). A dendritic model of coincidence detection in the avian brainstem. Neurocomputing, 26–27, 263–269.Google Scholar
  111. Smith, Z. D. (1981). Organization and development of brain stem auditory nuclei of the chicken: Dendritic development in N. laminaris. Journal of Comparative Neurology, 203(3), 309–333.PubMedGoogle Scholar
  112. Smith, P. H. (1995). Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. Journal of Neurophysiology, 73(4), 1653–1667.PubMedGoogle Scholar
  113. Smith, D. J., & Rubel, E. W. (1979). Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. Journal of Comparative Neurology, 186(2), 213–239.PubMedGoogle Scholar
  114. Smith, P. H., Joris, P. X., & Yin, T. C. (1993). Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. Journal of Comparative Neurology, 331(2), 245–260.PubMedGoogle Scholar
  115. Smith, A. J., Owens, S., & Forsythe, I. D. (2000). Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. Journal of Physiology, 529(Pt. 3), 681–698.PubMedGoogle Scholar
  116. Soares, D., Chitwood, R. A., Hyson, R. L., & Carr, C. E. (2002). Intrinsic neuronal properties of the chick nucleus angularis. Journal of Neurophysiology, 88(1), 152–162.PubMedGoogle Scholar
  117. Stotler, W. A. (1953). An experimental study of the cells and connections of the superior olivary complex of the cat. Journal of Comparative Neurology, 98, 401–432.PubMedGoogle Scholar
  118. Sugden, S. G., Zirpel, L., Dietrich, C. J., & Parks, T. N. (2002). Development of the specialized AMPA receptors of auditory neurons. Journal of Neurobiology, 52(3), 189–202.PubMedGoogle Scholar
  119. Sullivan, W. E., & Konishi, M. (1984). Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. Journal of Neuroscience, 4(7), 1787–1799.PubMedGoogle Scholar
  120. Sullivan, W. E., & Konishi, M. (1986). Neural map of interaural phase difference in the owl’s brainstem. Proceedings of the National Academy of Science of the United States of America, 83, 8400–8404.Google Scholar
  121. Takahashi, T. T., Carr, C. E., Brecha, N., & Konishi, M. (1987). Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. Journal of Neuroscience, 7(6), 1843–1856.PubMedGoogle Scholar
  122. Takahashi, T. T., Bala, A. D., Spitzer, M. W., Euston, D. R., Spezio, M. L., & Keller, C. H. (2003). The synthesis and use of the owl’s auditory space map. Biological Cybernetics, 89(5), 378–387.PubMedGoogle Scholar
  123. Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology, 61, 477–496.PubMedGoogle Scholar
  124. Viete, S., Pena, J. L., & Konishi, M. (1997). Effects of interaural intensity difference on the processing of interaural time difference in the owl’s nucleus laminaris. Journal of Neuroscience, 17(5), 1815–1824.PubMedGoogle Scholar
  125. Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. Journal of Physiology (London), 509(Pt. 1), 183–194.Google Scholar
  126. Weiss, S. A., Preuss, T., & Faber, D. S. (2008). A role of electrical inhibition in sensorimotor integration. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18047–18052.PubMedGoogle Scholar
  127. Wild, J. M., Krutzfeldt, N. O., & Kubke, M. F. (2009). Afferents to the cochlear nuclei and nucleus laminaris from the ventral nucleus of the lateral lemniscus in the zebra finch (Taeniopygia guttata). Hearing Research, 257(1–2), 1–7.PubMedGoogle Scholar
  128. Woodworth, R. S. (1954). Experimental Psychology. New York: Holt, Rinehart and Winston.Google Scholar
  129. Wu, S. H., & Oertel, D. (1984). Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. Journal of Neuroscience, 4(6), 1577–1588.PubMedGoogle Scholar
  130. Yang, L., Monsivais, P., & Rubel, E. W. (1999). The superior olivary nucleus and its influence on nucleus laminaris: A source of inhibitory feedback for coincidence detection in the avian auditory brainstem. Journal of Neuroscience, 19(6), 2313–2325.PubMedGoogle Scholar
  131. Yin, T. C., & Chan, J. C. (1990). Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology, 64(2), 465–488.PubMedGoogle Scholar
  132. Zhang, S., & Trussell, L. O. (1994). Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. Journal of Physiology (London), 480(1), 123–136.Google Scholar
  133. Zhou, Y., Carney, L. H., & Colburn, H. S. (2005). A model for interaural time difference sensitivity in the medial superior olive: Interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. Journal of Neuroscience, 25(12), 3046–3058.PubMedGoogle Scholar
  134. Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations