Large N Asymptotics in Random Matrices

The Riemann–Hilbert Approach
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The Hermitian matrix model is defined as the ensemble \(\mathcal{H}_N \) of random Hermitian \({N}\,\times\,{N} \) matrices \({M}\,=\,{(M_{ij})}^{N}_{i,j=1} \) with the probability distribution
$${\mu N({\rm d} {M})}\,=\,\widehat{Z}^{-1}_{N}{\rm exp}(-N\, {\rm Tr}\,V(M)){{\rm d}{M}}.$$
(5.1)

Keywords

Soliton Lution Dition Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adler, T. Shiota, P. van Moerbeke: Phys. Lett. A 208, 67 (1995)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. Baik, P.A. Deift, K. Johansson: J. Amer. Math. Soc. 12, 1119 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    R. Beals, P.A. Deift, C. Tomei, Direct and Inverse Scattering on the Line (Amer. Math. Soc., Providence, RI 1988)MATHGoogle Scholar
  4. 4.
    P.M. Bleher, A.R. Its: Ann. Math. 150, 185 (1999)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    P.M. Bleher, A.R. Its: Commun. Pure Appl. Math. 56, 433 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    P.M. Bleher, A.R. Its: Ann. Inst. Fourier 55, 1943 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    É. Brézin, V.A. Kazakov: Phys. Lett. B 236, 144 (1990).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K.F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators (Birkhäuser, Basel 1981)MATHGoogle Scholar
  9. 9.
    T. Claeys, A.B.J. Kuijlaars: Commun. Pure Appl. Math. 59 1573 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Y. Chen, M.E. H. Ismail, J. Phys. A 30, 7817 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Č. Crnković, G. Moore: Phys. Lett. B 257, 322 (1991).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P.A. Deift: Orthogonal Polynomials and Random Matrices : A Riemann–Hilbert Approach (Courant Inst Math. Sci., New York 1999)Google Scholar
  13. 13.
    P.A. Deift, X. Zhou: Ann. Math. 137, 295 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P.A. Deift, X. Zhou: Commun. Pure Appl. Math. 48, 277 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    P.A. Deift, X. Zhou: Int. Math. Res. Not. 2002, 2121 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    P.A. Deift, X. Zhou: Acta Math. 188, 163 (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    P.A. Deift, A.R. Its, X. Zhou: Long-time asymptotics for integrable nonlinear wave equations. In: Important Developments in Soliton Theory, ed. by A.S. Fokas, V.E. Zakharov, (Springer, Berlin 1993) pp 181–204Google Scholar
  18. 18.
    P.A. Deift, T. Kriecherbauer, K.T.-R. McLaughlin: J. Approx. Theory 95, 399 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    P.A. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou: Commun. Pure Appl. Math. 52, 1335 (1999)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    M.R. Douglas, N. Seiberg, S.H. Shenker: Phys. Lett. B 244, 381 (1990)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M.R. Douglas, S.H. Shenker: Nucl. Phys. B 335, 635 (1990)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    F.J. Dyson: Commun. Math. Phys. 19, 235 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    P. Di Francesco, P. Ginsparg, J. Zinn-Justin: Physics Rep. 254 (1995)Google Scholar
  24. 24.
    B. Eynard: arXiv:hep-th/0210047Google Scholar
  25. 25.
    N.M. Ercolani, K.D.T.-R. McLaughlin: arXiv:math-ph/0609048Google Scholar
  26. 26.
    H. Flaschka and A.C. Newell: Commun. Math. Phys. 76, 65 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    A.S. Fokas, A.R. Its, A.A. Kapaev, V.Yu. Novokshenov: Painlevé Transcendents. The Riemann–Hilbert Approach (Amer. Math. Soc., Providence, RI 2006)Google Scholar
  28. 28.
    A.S. Fokas, A.R. Its, A.V. Kitaev: Commun. Math. Phys. 142, 313 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    A.S. Fokas, A.R. Its, A.V. Kitaev: Commun. Math. Phys. 147, 395 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    F.D. Gakhov: Boundary Value Problems, 3rd edn (Nauka, Moscow 1977)MATHGoogle Scholar
  31. 31.
    D.J. Gross, A.A. Migdal: Phys. Rev. Lett. 64, 127 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    S.P. Hastings, J.B. McLeod: Arch. Rational Mech. Anal. 73, 31 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    E.L. Ince, Ordinary Differential Equations (Dover, New York 1956)Google Scholar
  34. 34.
    A.R. Its, Notices Amer. Math. Soc. 50, 1389 (2003)MathSciNetMATHGoogle Scholar
  35. 35.
    A.R. Its, A.V. Kitaev, A.S. Fokas: Usp. Mat. Nauk 45, 135 (1990); Russian Math. Surveys 45, 155 (1990)Google Scholar
  36. 36.
    A.R. Its, A.V. Kitaev, A.S. Fokas: Zap. Nauch. Semin. LOMI 187, 3 (1991); J. Math. Sci. 73, 415 (1995)Google Scholar
  37. 37.
    A.R. Its and V.Yu. Novokshenov, The Isomonodromy Deformation Method in the Theory of Painlevé Equations (Springer, Berlin 1986)Google Scholar
  38. 38.
    A.A. Kapaev: Phys. Lett. A, 167, 356 (1992)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    G.S. Litvinchuk, I.M. Spitkovskii: Factorization of Measurable Matrix Functions (Birkhäuser, Basel 1987)Google Scholar
  40. 40.
    M.L. Mehta: Random Matrices, 2nd edn (Academic Press, Boston, 1991)MATHGoogle Scholar
  41. 41.
    L. Pastur, M. Shcherbina: J. Stat. Phys. 86, 109 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    V. Periwal, D. Shevitz: Nucl. Phys. B 344, 731 (1990)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    E.B. Saff, V. Totik, Logarithmic Potentials with External Fields (Springer, Berlin 1997)MATHGoogle Scholar
  44. 44.
    B.I. Suleimanov: Differentsial nye Uravneniya 23, 834 (1987); Differential Equations 23, 569 (1987)Google Scholar
  45. 45.
    C.A. Tracy, H. Widom: Introduction to random matrices. In: Geometric and Quantumww Aspects of Integrable Systems, ed. by G.F. Helminck (Springer, Berlin 1993) pp 103–130Google Scholar
  46. 46.
    C.A. Tracy, H. Widom: Commun. Math. Phys. 163, 33 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  47. 47.
    P. van Moerbeke: Astérisque 276, 411 (2002)Google Scholar
  48. 48.
    P. van Moerbeke: Integrable lattices: random matrices and random permutations. In: Random Matrices and Their Applications, ed. by P.M. Bleher, A.R. Its (Cambridge Univ. Press, Cambridge 2001) pp 321–406Google Scholar
  49. 49.
    X. Zhou: SIAM J. Math. Anal. 20, 966 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics SciencesIndiana University–Purdue University IndianapolisIndianapolisUSA

Personalised recommendations