Skip to main content

Abstract

Electronic density of states in the extended and localized states govern optical and electrical properties. We see, in this chapter, that studies on electronic properties have yielded a lot of valuable ideas, such as Tauc gap, mobility edge, and charged defects. In addition, concepts originally proposed for crystals such as polaron and Urbach edge bear special importance in chalcogenide glasses. We also consider optical nonlinearity, which is prominent in the chalcogenide glass. Electrical conduction mechanisms, under dc and ac electric fields, are also discussed. It is suggested that the Meyer–Neldel law is important to obtain full understanding of the transport mechanisms. The final section refers to composition dependence of the bandgap energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Theoretically, we may multiply the right-hand side by 1/ω, while the factor gives least effects. Absorption with n = 2 appears also in indirect transitions in crystals, which suggests that static and vibrational disorders play similar (neglecting and suppressing wavenumber conservation) roles in the electronic excitation.

  2. 2.

    2A slightly different expression was given later. See Saitoh and Tanaka (2011).

References

  • Abe, S., Toyozawa, Y.: Interband absorption spectra of disordered semiconductors in the coherent potential approximation. J. Phys. Soc. Jpn. 50, 2185−2194 (1981)

    Article  CAS  Google Scholar 

  • Adriaenssens, G.J., Eliat, A.: In: Andriesh, A., Bertolotti, M. (eds.) Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, pp. 77–91. Kluwer, Dordrecht (1996)

    Google Scholar 

  • Agarwal, S.C.: Nature of localized states in amorphous semiconductors − A study by electron spin resonance. Phys. Rev. B 7, 685−691 (1973)

    Article  CAS  Google Scholar 

  • Anderson, P.W.: Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953−955 (1975)

    Article  Google Scholar 

  • Andreev, A.A., Kolomiets, B.T., Mazets, T.F., Manukyan, A.L., Pavlov, S.K.: Temperature dependence of the absorption edge of As2Se3 and AsSe in the solid and liquid states. Sov. Phys. Solid State 18, 29−31 (1976)

    Google Scholar 

  • Baranovskii, S.D., Karpov, V.G.: Localized electron states in glassy semiconductors (review). Sov. Phys. Semicond. 21, 1−10 (1987)

    Google Scholar 

  • Baranovskii, S., Rubel, O.: Charge transport in disordered materials. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, Chap. 9. pp. 161–181 Springer, New York, NY (2006)

    Google Scholar 

  • Belev, G., Tonchev, D., Fogal, B., Allen, C., Kasap, S.O.: Effects of oxygen and chlorine on charge transport in vacuum deposited pure a-Se films. J. Phys. Chem. Solids 68, 972−977 (2007)

    Article  CAS  Google Scholar 

  • Benkhedir, M.L., Mansour, M., Djefaflia, F., Brinza, M., Adriaenssens, G.J.: Photocurrent measurements in chlorine-doped amorphous selenium. Phys. Status Solidi (b) 246, 1841−1844 (2009)

    Article  CAS  Google Scholar 

  • Boling, N.L., Glass, A.J., Owyoung, A.: Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE J. Quant. Electron. 14, 601−608 (1978)

    Article  CAS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics 2nd ed. Academic, Amsterdam (2003)

    Google Scholar 

  • Butterfield, A.W.: The optical properties of vitreous AsxSe1-x thin films. Thin Solid Films 21, 287−296 (1974)

    Article  CAS  Google Scholar 

  • Chelikowsky, J.R., Schlűter, M.: Electron states in α-quartz: A self-consistent pseudopotential calculation. Phys. Rev. B 15, 4020−4029 (1977)

    Article  CAS  Google Scholar 

  • Cherkashinin, G., Ambacher, O., Schiffer, T., Schmidt, G.: Mobility edge in hydrogenated amorphous carbon. Appl. Phys. Lett. 88, 172114 (2006)

    Article  CAS  Google Scholar 

  • Chua, K.-B., Österberg, U.: Electron mean free path in fused silica and optical fiber perform. J. Appl. Phys. 95, 6204−6208 (2004)

    Article  CAS  Google Scholar 

  • Churbanov, M.F., Plotnichenko, V.G.: Optical fibers from high-purity arsenic chalcogenide glasses. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass III, Chap. 5. pp. 209–230 Elsevier, Amsterdam (2004)

    Google Scholar 

  • Cody, G.D., Tiedje, T., Abeles, B., Brooks, B., Goldstein, Y.: Disorder and the optical-absorption edge of hydrogenated amorphous-silicon. Phys. Rev. Lett. 47, 1480−1483 (1981)

    Article  CAS  Google Scholar 

  • Cohen, M.H., Fritzsche, H., Ovshinsky, S.R.: Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065−1068 (1969)

    Article  CAS  Google Scholar 

  • Douady, J., Boulanger, B., Fuchs, E., Smektala, F., Troles, J.: Symmetry and phase-matching properties of third-harmonic generation under the photoelastic effect in Ge-As-Se chalcogenide glasses. J. Opt. Soc. Am. B 22, 1486−1492 (2005)

    Article  CAS  Google Scholar 

  • Drabold, D.A., Estreichen, S.K. (eds.): Theory of Defects in Semiconductors. Springer, Berlin (2007)

    Google Scholar 

  • Dunstan, D.J.: Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C: Solid State Phys. 15, L419−L424 (1982)

    Article  CAS  Google Scholar 

  • Elliott, S.R.: Ac conduction in amorphous-chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135−218 (1987)

    Article  CAS  Google Scholar 

  • Elliott, S.R.: Physics of Amorphous Materials 2nd ed. Longman Scientific & Technical, Essex (1990)

    Google Scholar 

  • Emin, D.: Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Adv. Phys. 24, 305−348 (1975)

    Article  Google Scholar 

  • Emin, D.: Generalized adiabatic polaron hopping: Meyer-Neldel compensation and Poole-Frenkel behavior. Phys. Rev. Lett. 100, 166602 (2008)

    Article  CAS  Google Scholar 

  • Enck, R.C.: Two-photon photogeneration in amorphous selenium. Phys. Rev. Lett. 31, 220−223 (1973)

    Article  CAS  Google Scholar 

  • Farag, A., Edmond, J.T.: Optical absorption and electrical conductivity of glasses in the systems As2S3-xTex (for small x) and As2-ySbyS3. Philos. Mag. B 53, 413−430 (1986)

    Article  CAS  Google Scholar 

  • Fisher, F.D., Marshall, J.M., Owen, A.E.: Transport properties and electronic structure of glasses in the arsenic-selenium system. Philos. Mag. B 33, 261−275 (1976)

    Article  CAS  Google Scholar 

  • Fortner, J., Karpov, V.G., Saboungi, M.-L.: Meyer–Neldel rule for liquid semiconductors. Appl. Phys. Lett. 66, 997−999 (1995)

    Article  CAS  Google Scholar 

  • Fritzsche, H.: Optical and electrical energy gaps in amorphous semiconductors. J. Non-Cryst. Solids 6, 49−71 (1971)

    Article  CAS  Google Scholar 

  • Ganjoo, A., Shimakawa, K.: Estimation of density of charged defects in amorphous chalcogenides from a.c. conductivity: Random-walk approach for bipolarons based on correlated barrier hopping. Philos. Mag. Lett. 70, 287−291 (1994)

    Article  CAS  Google Scholar 

  • Ghahramani, E., Sipe, J.E.: Pressure dependence of the band gaps of semiconductors. Phys. Rev. B 40, 12516−12519 (1989)

    Article  Google Scholar 

  • Griscom, D.L.: The electronic structure of SiO2: A review of recent spectroscopic and theoretical advances.  J. Non-Cryst. Solids 24, 155−234 (1977)

    Article  CAS  Google Scholar 

  • Hachiya, K.: Electronic structure of the wrong-bond states in amorphous germanium sulphides. J. Non-Cryst. Solids 321, 217−224 (2003)

    Article  CAS  Google Scholar 

  • Halpern, V.: Localized electron states in the arsenic chalcogenides. Philos. Mag. 34, 331−335 (1976)

    Article  CAS  Google Scholar 

  • Hughes, M.A., Yang, W.J., Hewak, D.W.: Spectral broadening in femtosecond laser written waveguides in chalcogenide glass. J. Opt. Soc. Am. B 26, 1370−1378 (2009)

    Article  CAS  Google Scholar 

  • Ihm, J.: Optical absorption tails and the structure of chalcogenide glasses. J. Phys. C: Solid State Phys. 18, 4741−4751 (1985)

    Article  CAS  Google Scholar 

  • Inagawa, I., Morimoto, S., Yamashita, T., Shirotani, I.: Temperature dependence of transmission loss of chalcogenide glass fibers. Jpn. J. Appl. Phys. 36, 2229−2235 (1997)

    Article  CAS  Google Scholar 

  • Itoh, S., Nakao, K.: Electronic structure of VAP in sulfur. J. Phys. Soc. Jpn. 55, 268−273 (1986)

    Article  CAS  Google Scholar 

  • Johnson, S.R., Tiedje, T.: Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609−5613 (1995)

    Article  CAS  Google Scholar 

  • Jovari, P., Yannopoulos, S.N., Kaban, I., Kalampounias, A., Lishchynskyy, I., Beuneu, B., Kostadinova, O., Welter, E., Schops, A.: Structure of AsxTe100−x (20 ≤ x ≤ 60) glasses investigated with X-ray absorption fine structure, X-ray and neutron diffraction, and reverse Monte Carlo simulation. J. Chem. Phys. 129, 214502 (2008)

    Article  CAS  Google Scholar 

  • Kajihara, K., Hirano, M., Skuja, L., Hosono, H.: Intrinsic defect formation in amorphous SiO2 by electronic excitation: Bond dissociation versus Frenkel mechanisms. Phys. Rev. B 78, 094201 (2008)

    Article  CAS  Google Scholar 

  • Kasap, S., Frey, J.B., Belev, G., Tousignant, O., Mani, H., Laperriere, L., Reznik, A., Rowlands, J.A.: Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi (b) 246, 1794−1805 (2009)

    Article  CAS  Google Scholar 

  • Kastner, M.: Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys. Rev. Lett. 28, 355−357 (1972)

    Article  CAS  Google Scholar 

  • Kastner, M., Adler, D., Fritzsche, H.: Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504−1507 (1976)

    Article  CAS  Google Scholar 

  • Kato, T., Tanaka, K.: Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 44, 7340−7344 (2005)

    Article  CAS  Google Scholar 

  • Kemeny, G., Rosenberg, B.: Theory of the pre-exponential factor in organic semiconductors. J. Chem. Phys. 52, 4151 (1970)

    Article  CAS  Google Scholar 

  • Kirkpatrik, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574−588 (1973)

    Article  Google Scholar 

  • Kitao, M., Mochizuki, T., Ikeda, H., Hasegawa, H., Yamada, S.: Optical absorption and photoconductivity of amorphous As2Se3. Rep. Electron. Lab. Shizuoka Univ. 12, 45−54 (1977)

    CAS  Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics 8th ed. Wiley, New York, NY (2005)

    Google Scholar 

  • Kolobov, A.V.: On the origin of p-type conductivity in amorphous chalcogenides. J. Non-Cryst. Solids 198−200, 728−731 (1996)

    Article  Google Scholar 

  • Kolobov, A.V., Kondo, M., Oyanagi, H., Matsuda, A., Tanaka, K.: Negative correlation energy and valence alternation in amorphous selenium: An in situ optically induced ESR study. Phys. Rev. B 58, 12004−12010 (1998)

    Article  CAS  Google Scholar 

  • Kranjčec, M, Studenyak, I.P., Kurik, M.V.: On the Urbach rule in non-crystalline solids. J. Non-Cryst. Solids 355, 54−57 (2009)

    Article  CAS  Google Scholar 

  • Lippens, P.E., Jumas, J.C., Olivier-Fourcade, J., Aldon, L., Gheorghiu-du la Rocque, A., Sĕnĕmaud, C.: Electronic structure of Ge-As-Te glasses. J. Phys. Chem. Solids 61, 1761−1767 (2000)

    Article  CAS  Google Scholar 

  • Martin-Samos, L., Limoge, Y., Roma, G.: Defects in amorphous SiO2: Valence alternation pair model. Phys. Rev. B 76, 104203 (2007)

    Article  CAS  Google Scholar 

  • Matsuda, O., Ohba, T., Murase, K., Ono, I., Grekos, P., Kouchi, T., Nakatake, M., Tamura, M., Namatame, H., Hosokawa, S., Taniguchi, M.: Photoemission and inverse-photoemission study of the electronic structure of p- and n-type amorphous Ge-Se-Bi films. J. Non-Cryst. Solids 198, 688−691 (1996)

    Article  Google Scholar 

  • Mehta, N.: Meyer-Neldel rule in chalcogenide glasses: Recent observations and their consequences. Curr. Opin. Solid State Mater. Sci. 14, 95−106 (2010)

    Article  CAS  Google Scholar 

  • Moss, T.S.: Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi (b) 131, 415−427 (1985)

    Article  CAS  Google Scholar 

  • Mott, N.F.: Conduction in Non-Crystalline Materials 2nd ed. Clarendon Press, Oxford (1993)

    Google Scholar 

  • Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1979)

    Google Scholar 

  • Mukhopadhyay, S., Sushko, P.V., Stoneham, A.M., Shluger, A.L.: Correlation between the atomic structure, formation energies, and optical absorption of neutral oxygen vacancies in amorphous silica. Phys. Rev. B 71, 235204 (2005)

    Article  CAS  Google Scholar 

  • Narushima, S., Hiroki, M., Ueda, K., Shimizu, K., Kamiya, T., Hirano, M., Hosono, H.: Electrical properties and local structure of n-type conducting amorphous indium sulphide. Philos. Mag. Lett. 84, 665−671 (2004)

    Article  CAS  Google Scholar 

  • Ngai, K.L.: Meyer–Neldel rule and anti Meyer–Neldel rule of ionic conductivity: Conclusions from the coupling model. Solid State Ionics 105, 231−235 (1998)

    Article  CAS  Google Scholar 

  • Ogusu, K., Takayama, K.: Optical bistability in photonic crystal microrings with nonlinear dielectric materials. Opt. Express 16, 7525−7539 (2008)

    Article  Google Scholar 

  • Oheda, H.: The exponential absorption edge in amorphous Ge–Se compounds. Jpn. J. Appl. Phys. 18, 1973−1978 (1979)

    Article  CAS  Google Scholar 

  • Okamoto, H., Hattori, K., Hamakawa, Y.: Phenomenological scaling of optical absorption in amorphous semiconductors. J. Non-Cryst. Solids 198−200, 124−127 (1996)

    Article  Google Scholar 

  • Ono, I., Grekos, P.C., Kouchi, T., Nakatake, M., Tamura, M., Hosokawa, S., Namatame, H., Taniguchi, M.: A study of electronic states of trigonal and amorphous Se using ultraviolet photoemission and inverse-photoemission spectroscopies. J. Phys.: Condens. Matter 8, 7249−7261 (1996)

    Article  CAS  Google Scholar 

  • Overhof, H., Thomas, P.: Electronic Transport in Hydrogenated Amorphous Semiconductors. Springer, Berlin (1989)

    Google Scholar 

  • Ovshinsky, S.R.: Chemical modification of amorphous chalcogenides. In: Spear, W.E. (ed.) 7th ICALS Amorphous and Liquid Semiconductors, pp. 519−523. University of Edinburgh, Edinburgh (1977)

    Google Scholar 

  • Ovshinsky, S.R., Adler, D.: Local structure, bonding, and electronic properties of covalent amorphous semiconductors. Contemp. Phys. 19, 109−126 (1978)

    Article  CAS  Google Scholar 

  • Pan, Y., Inam, F., Zhang, M., Drabold, D.A.: Atomistic origin of Urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008)

    Article  CAS  Google Scholar 

  • Pétursson, J., Marshall, J.M., Owen, A.E.: Optical absorption in As-Se glasses. Philos. Mag. B 63, 15−31 (1991)

    Article  Google Scholar 

  • Phillips, J.C.: Bonds and Bands in Semiconductors. Academic, New York, NY (1973)

    Google Scholar 

  • Psaila, N.D., Thomson, R.R., Bookey, H.T., Shen, S., Chiodo, N., Osellame, R., Cerullo, G., Jha, A., Kar, A.K., Ajoy, K.: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Opt. Express 15, 15776−15781 (2007)

    Article  Google Scholar 

  • Sadigh, B., Erhart, P., Aberg, D., Trave, A., Schwegler, E., Bude, J.: First-principle calculations of the Urbach tail in optical absorption spectra of silica glass. Phys. Rev. Lett. 106, 027401 (2011)

    Google Scholar 

  • Saito, K., Ikushima, A.J.: Absorption edge in silica glass. Phys. Rev. B 62, 8584−8587 (2000)

    Article  CAS  Google Scholar 

  • Saitoh, A. Tanaka, K.: Optical nonlinearity in chalcogenide glasses for near-infrared all-optical devices. J. Optoelectron. Adv. Mater. 13, 71–74 (2011)

    Google Scholar 

  • Sheik-Bahae, M., Hagan, D.J., Van Stryland, E.W.: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96−99 (1990)

    Article  CAS  Google Scholar 

  • Shimakawa, K., Abdel-Wahab, F.: The Meyer–Neldel rule in chalcogenide glasses. Appl. Phys. Lett. 70, 652−654 (1997)

    Article  CAS  Google Scholar 

  • Shimakawa, K., Ganjoo, A.: Ac photoconductivity of hydrogenated amorphous silicon: Influence of long-range potential fluctuations. Phys. Rev. B 65, 165213 (2002)

    Article  CAS  Google Scholar 

  • Simdyankin, S.I., Elstner, M., Niehaus, T.A., Frauenheim, T., Elliott, S.R.: Influence of copper on the electronic properties of amorphous chalcogenides. Phys. Rev. B 72, 020202(R) (2005a)

    Article  CAS  Google Scholar 

  • Simdyankin, S.I., Niehaus, T.A., Natarajan, G., Frauenheim, Th., Elliott, S.R.: New type of charged defect in amorphous chalcogenides. Phys. Rev. Lett. 94, 086401 (2005b)

    Article  CAS  Google Scholar 

  • Sobolev, V. Val., Sobolev, V.V.: Optical spectra of arsenic chalcogenide in a wide energy range of fundamental absorption. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass II, Chap. 5, pp. 201–228. Elsevier, Amsterdam (2004)

    Google Scholar 

  • Street, R.A.: Luminescence in amorphous semiconductors. Adv. Phys. 25, 397−453 (1976)

    Article  CAS  Google Scholar 

  • Street, R.A., Mott, N.F.: States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293−1296 (1975)

    Article  CAS  Google Scholar 

  • Stuke, J.: Problems in the understanding of electronic properties of amorphous silicon. J. Non-Cryst. Solids 97−98, 1−14 (1987)

    Article  Google Scholar 

  • Suzuki, K., Matsumoto, K., Hayata, H., Nakamura, N., Minari, N.: Mass spectrometric study of evaporated Se films and melt-quenched Se glasses. J. Non-Cryst. Solids 95−96, 555−562 (1987)

    Article  Google Scholar 

  • Takahashi, Y., Masai, H., Fujiwara, T.: Nucleation tendency and crystallizing phase in silicate glasses: A structural aspect. Appl. Phys. Lett. 95, 071904 (2009)

    Article  CAS  Google Scholar 

  • Tanaka, K.: Pressure studies of amorphous semiconductors. In: Borossov, M., Kirov, N., Vavrek, A. (eds.) Disordered Systems and New Materials, pp. 290−309. World Scientific, Singapore (1989a)

    Google Scholar 

  • Tanaka, K.: Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270−1279 (1989b)

    Article  CAS  Google Scholar 

  • Tanaka, K.: Wrong bond in glasses: A comparative study on oxides and chalcogenides. J. Opt. Adv. Matter 4, 505−512 (2002)

    CAS  Google Scholar 

  • Tanaka, K.: In: Lucovsky G., Popescu M. (eds.) Non-Crystalline Materials for Optoelectronics, Chap. 4. INOE, Bucharest (2004)

  • Tanaka, K.: Optical nonlinearity in photonic glasses. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, Chap. 44. Springer, New York, NY (2006)

    Google Scholar 

  • Tanaka, K., Gotoh, T., Yoshida, N., Nonomura, S.: Photothermal deflection spectroscopy of chalcogenide glasses. J. Appl. Phys. 91, 125 (2002)

    Article  CAS  Google Scholar 

  • Tanaka, K., Kasanuki, Y., Odajima, A.: Physical properties and photoinduced changes of amorphous Ge-S films. Thin Solid Films 117, 251−260 (1984)

    Article  CAS  Google Scholar 

  • Tarnow, E., Antonelli, A., Joannopoulos, J.D.: Crystalline As2Se3: Electronic and geometrical structure. Phys. Rev. B 34, 4059–4073 (1986)

    Google Scholar 

  • Tarnow, E., Joannopoulos, J.D., Payne, M.C.: Antisites, antistructures, and bond-switching reactions in layered chalcogenides. Phys. Rev. B 39, 6017−6024 (1989)

    Article  CAS  Google Scholar 

  • Tauc, J.: Highly transparent glasses. In: Mitra, S.S., Bendow, B. (eds.) Optical Properties of Highly Transparent Solids, pp. 245−260. Plenum, New York, NY (1975)

    Chapter  Google Scholar 

  • Taylor, P.C.: The localization of electrons in amorphous semiconductors: A twenty-first century perspective. J. Non-Cryst. Solids 352, 839−850 (2006)

    Article  CAS  Google Scholar 

  • Terakado, N., Tanaka, K.: The structure and optical properties of GeO2–GeS2 glasses. J. Non-Cryst. Solids 354, 1992−1999 (2008)

    Article  CAS  Google Scholar 

  • Tichý, L., Tichá, H., Nagels, P., Sleeckx, E., Callaerts, R.: Optical gap and Urbach edge slope in a-Se. Mater. Lett. 26, 279−283 (1996)

    Article  Google Scholar 

  • Tohge, N., Minami T., Yamamoto, Y., Tanaka, M.: Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se. J. Appl. Phys. 51, 1048−1053 (1980)

    Article  CAS  Google Scholar 

  • Tsiulyanu, D.: Heterostructures on chalcogenide glass and their applications. In: Fairman, R., Ushkov, B. (eds.) Semiconducting Chalcogenide Glass III, Chap. 2. Elsevier, Amsterdam (2004)

    Google Scholar 

  • Vanderbilt, D., Joannopoulos, J.D.: Theory of defect states in glassy As2Se3. Phys. Rev. B 23, 2596−2606 (1981)

    Article  CAS  Google Scholar 

  • Vanderbilt, D., Joannopoulos, J.D.: Total energies in Se. III. Defects in the glass. Phys. Rev. B 27, 6311−6321 (1983)

    Article  CAS  Google Scholar 

  • Warren, Jr, W.W., Dupree, R.: Structural and electronic transformations of liquid selenium at high temperature and pressure: A77Se NMR study. Phys. Rev. B 22, 2257−2275 (1980)

    Article  CAS  Google Scholar 

  • Weinberger, B.R., Roxlo, C.B., Etemad, S., Baker, G.L., Orenstein, J.: Optical absorption in polyacetylene: A direct measurement using photothermal deflection spectroscopy. Phys. Rev. Lett. 53, 86−89 (1984)

    Article  CAS  Google Scholar 

  • Weinstein, B.A., Zallen, R., Slade, M.L.: The effect of pressure on optical properties of As2S3 glass. J. Non-Cryst. Solids 35−36, 1255−1259 (1980)

    Article  Google Scholar 

  • Weinstein, B.A., Zallen, R., Slade, M.L., Mikkelsen, J.C.: Pressure-optical studies of GeS2 glasses and crystals – Implications for network topology. Phys. Rev. B 25, 781−792 (1982)

    Article  CAS  Google Scholar 

  • Wemple, S.H., DiDomenico, Jr, M.: Optical dispersion and the structure of solids. Phys. Rev. Lett. 23, 1156−1160 (1969)

    Article  CAS  Google Scholar 

  • Xiong, C., Magi, E., Luan, F., Tuniz, A., Dekker, S., Sanghera, J.S., Shaw, L.B., Aggarwal, I.D., Eggleton, B.J.: Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber. Appl. Opt. 48, 5467−5474 (2009)

    Article  CAS  Google Scholar 

  • Xu, M., Cheng, Y.Q., Sheng, H.W., Ma, E.: Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 103, 195502 (2009)

    Article  CAS  Google Scholar 

  • Yelon, A., Movaghar, B., Crandal, R.S.: Multi-excitation entropy: Its role in thermodynamics and kinetics. Rep. Prog. Phys. 69, 1145−1194 (2006)

    Article  CAS  Google Scholar 

  • Young, P.A.: Optical properties of vitreous arsenic trisulphide. J. Phys. C: Solid State 4, 93−106 (1971)

    Article  CAS  Google Scholar 

  • Zallen, R.: The Physics of Amorphous Solids. Wiley, New York, NY (1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tanaka, K., Shimakawa, K. (2011). Electronic Properties. In: Amorphous Chalcogenide Semiconductors and Related Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9510-0_4

Download citation

Publish with us

Policies and ethics