Advertisement

Plant Carbon Budgets

  • F. Stuart ChapinIII
  • Pamela A. Matson
  • Peter M. Vitousek
Chapter

Abstract

The balance between carbon inputs through gross primary production (GPP) and carbon losses through plant respiration and tissue turnover govern the carbon balance of plants. This chapter describes the factors that regulate this balance.

Keywords

Leaf Area Leaf Area Index Gross Primary Production Nutrient Limitation Euphotic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allan, J.D. and M.M. Castillo. 2007. Stream Ecology: Structure and Function of Running Waters. 2nd edition. Springer, Dordrecht.CrossRefGoogle Scholar
  2. Amthor, J.S. 2000. The McCree-deWit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86:1-20.CrossRefGoogle Scholar
  3. Bazzaz, F.A. 1996. Plants in Changing Environments. Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge.Google Scholar
  4. Biggs, B.J.F. 1996. Patterns in benthic algae of streams. Pages 31-56 in R.J. Stevenson, M.L. Bothwell, and R.L. Lowe, editors. Algal Ecology. Academic Press, San Diego.CrossRefGoogle Scholar
  5. Billings, W.D. and H.A. Mooney. 1968. The ecology of arctic and alpine plants. Biological Review 43:481-529.CrossRefGoogle Scholar
  6. Bloom, A.J., F.S. Chapin, III, and H.A. Mooney. 1985. Resource limitation in plants: An economic analogy. Annual Review of Ecology and Systematics 16:363-392.CrossRefGoogle Scholar
  7. Bonan, G.B. 1993. Physiological controls of the carbon balance of boreal forest ecosystems. Canadian Journal of Forest Research 23:1453-1471.CrossRefGoogle Scholar
  8. Carmack, E. and D.C. Chapman. 2003. Wind-driven shelf/basin exchange on an Arctic shelf: The joint roles of ice cover extent and shelf-break bathymetry. Geophysical Research Letters 30:1778, doi:1710.1029/2003GL017526.CrossRefGoogle Scholar
  9. Chabot, B.F. and D.J. Hicks. 1982. The ecology of leaf life spans. Annual Review of Ecology and Systematics 13:229-259.CrossRefGoogle Scholar
  10. Chapin, F.S., III and G.R. Shaver. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66:564-576.CrossRefGoogle Scholar
  11. Chapin, F.S., III. 1989. The cost of tundra plant structures: Evaluation of concepts and currencies. American Naturalist 133:1-19.CrossRefGoogle Scholar
  12. Chapin, F.S., III, E.-D. Schulze, and H.A. Mooney. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423-448.CrossRefGoogle Scholar
  13. Chapin, F.S., III. 1991a. Integrated responses of plants to stress. BioScience 41:29-36.CrossRefGoogle Scholar
  14. Chapin, F.S., III and L. Moilanen. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709-715.CrossRefGoogle Scholar
  15. Chapin, F.S., III, G.R. Shaver, A.E. Giblin, K.G. Nadelhoffer, and J.A. Laundre. 1995. Response of arctic tundra to experimental and observed changes in climate. Ecology 76:694-711.CrossRefGoogle Scholar
  16. Chapin, F.S., III and V.T. Eviner. 2004. Biogeochemistry of terrestrial net primary production. Pages 215-247 in W.H. Schlesinger, editor. Treatise on Geochemistry. Elsevier, Amsterdam.Google Scholar
  17. Clark, D.A., S. Brown, D.W. Kicklighter, J.Q. Chambers, J.R. Thomlinson, et al. 2001. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11:356-370.CrossRefGoogle Scholar
  18. Cohen, J.E. 1994. Marine and continental food webs: Three paradoxes. Philosophical Transactions of the Royal Society of London, Series B 343:57-69.CrossRefGoogle Scholar
  19. Craine, J.M. 2009. Resource Strategies of Wild Plants. Princeton University Press, Princeton.CrossRefGoogle Scholar
  20. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Molecular Biology 42:55-76.CrossRefGoogle Scholar
  21. Detling, J.K., D.T. Winn, C. Procter-Gregg, and E.L. Painter. 1980. Effects of simulated grazing by below-ground herbivores on growth, CO2 exchange, and carbon allocation patterns of Bouteloua gracilis. Journal of Applied Ecology 17:771-778.CrossRefGoogle Scholar
  22. Downing, J.A., Y.T. Prairie, J.J. Cole, C.M. Duarte, L.J. Tranvik, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51:2388-2397.CrossRefGoogle Scholar
  23. Drake, B.G., G. Peresta, E. Beugeling, and R. Matamala. 1996. Long-term elevated CO2 exposure in a Chesapeake Bay wetland: Ecosystem gas exchange, primary production, and tissue nitrogen. Pages 197-214 in G.W. Koch and H.A. Mooney, editors. Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego.CrossRefGoogle Scholar
  24. Driscoll, C.T., G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, et al. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies. BioScience 51:180-198.CrossRefGoogle Scholar
  25. Dugdale, R.C. 1976. Nutrient cycles. Pages 141-172 in D.H. Cushing and J.J. Walsh, editors. The Ecology of the Seas. W. B. Saunders, Philadelphia.Google Scholar
  26. Evans, L.T. 1980. The natural history of crop yield. American Scientist 68:388-397.Google Scholar
  27. Fahey, T., C. Bledsoe, R. Day, R. Ruess, and A. Smucker. 1998. Fine Root Production and Demography. CRC Press, Boca Raton, FL.Google Scholar
  28. Foley, J.A., I.C. Prentice, N. Ramankutty, S. Levis, D. Pollard, et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10:603-628.CrossRefGoogle Scholar
  29. Garnier, E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution 6:126-131.CrossRefGoogle Scholar
  30. Gollan, T., N.C. Turner, and E.D. Schulze. 1985. The responses of stomata and leaf gas exchange to vapor pressure deficits and soil water content. III. In the sclerophyllous woody species Nerium oleander. Oecologia 65:356-362.Google Scholar
  31. Gower, S.T., C.J. Kucharik, and J.M. Norman. 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sensing of the Environment 70:29-51.CrossRefGoogle Scholar
  32. Gower, S.T. 2002. Productivity of terrestrial ecosystems. Pages 516-521 in H.A. Mooney and J. Canadell, editors. Encyclopedia of Global Change. Blackwell Scientific, Oxford.Google Scholar
  33. Gross, M.R., R.M. Coleman, and R.M. McDowell. 1988. Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291-1293.PubMedCrossRefGoogle Scholar
  34. Guenther, A., C. Hewitt, D. Erickson, R. Fall, C. Geron, et al. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100D:8873-8892.CrossRefGoogle Scholar
  35. Gutierrez, J.R. and W.G. Whitford. 1987. Chihuahuan desert annuals: Importance of water and nitrogen. Ecology 68:2032-2045.CrossRefGoogle Scholar
  36. Hay, M.E. and W. Fenical. 1988. Marine plant-herbivore interactions: The ecology of chemical defense. Annual Review of Ecology and Systematics 19:111-145.CrossRefGoogle Scholar
  37. Huxman, T.E., M.D. Smith, P.A. Fay, A.K. Knapp, M.R. Shaw, et al. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429:651-654.PubMedCrossRefGoogle Scholar
  38. Johnson, M.D., J. Völker, H.V. Moeller, E. Laws, K.J. Breslauer, et al. 2009. Universal constant for heat production in protists. Proceedings of the National Academy of Sciences, USA 106:6696-6699.CrossRefGoogle Scholar
  39. Kalff, J. 2002. Limnology. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  40. Kerkhoff, A.J., B.J. Enquist, J.J. Elser, and W.F. Fagan. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14:585-598.CrossRefGoogle Scholar
  41. Körner, C. 1999. Alpine Plant Life. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  42. Kozlowski, T.T., P.J. Kramer, and S.G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, San Diego.Google Scholar
  43. Kucharik, C.J., J.A. Foley, C. Delire, V.A. Fisher, M.T. Coe, et al. 2000. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure. Global Biogeochemical Cycles 14:795-825.CrossRefGoogle Scholar
  44. Kummerow, J., B.A. Ellis, S. Kummerow, and F.S. Chapin, III. 1983. Spring growth of shoots and roots in shrubs of an Alaskan muskeg. American Journal of Botany 70:1509-1515.CrossRefGoogle Scholar
  45. Lambers, H., F.S. Chapin, III, and T.L. Pons. 2008. Plant Physiological Ecology. 2nd edition. Springer, New York.CrossRefGoogle Scholar
  46. Landsberg, J.J. and S.T. Gower. 1997. Applications of Physiological Ecology to Forest Management. Academic Press, San Diego.Google Scholar
  47. Lauenroth, W.K. and O.E. Sala. 1992. Long-term forage production of North American shortgrass steppe. Ecological Applications 2:397-403.CrossRefGoogle Scholar
  48. Longhurst, A.R. 1998. Ecological Geography of the Sea. Academic Press, San Diego.Google Scholar
  49. Luyssaert, S., I. Inglima, M. Jung, A.D. Richardson, M. Reichstein, et al. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13:2509-2537.CrossRefGoogle Scholar
  50. Mann, K.H. and J.R.N. Lazier. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Third edition. Blackwell Publishing, Victoria, Australia.Google Scholar
  51. Mark, A.F. and K.J.M. Dickinson. 2008. Maximizing water yield with indigenous non-forest vegetation: A New Zealand perspective. Frontiers in Ecology and the Environment 6:25-34.CrossRefGoogle Scholar
  52. McKane, R.B., E.B. Rastetter, G.R. Shaver, K.J. Nadelhoffer, A.E. Giblin, et al. 1997. Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology 78:1170-1187.CrossRefGoogle Scholar
  53. McTammany, M.E., J.R. Webster, E.F. Benfield, and M.A. Neatrour. 2003. Longitudinal patterns of metabolism in a southern Appalachian river. Journal of the North American Benthological Society 22:359-370.CrossRefGoogle Scholar
  54. Mulholland, P.J., C.S. Fellows, J.L. Tank, N.B. Grimm, J.R. Webster, et al. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46:1503-1517.CrossRefGoogle Scholar
  55. Nixon, S.W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnology and Oceanography 33:1005-1025.CrossRefGoogle Scholar
  56. Pauly, D., J. Alder, A. Bakun, S. Heileman, K.-H. Kock, et al. 2005. Marine fisheries systems. Pages 477-511 in MillenniumEcosystemAssessment, editor. Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington.Google Scholar
  57. Penning de Vries, F.W.T., A.H.M. Brunsting, and H.H. van Laar. 1974. Products, requirements, and efficiency of biosynthesis: A quantitative approach. Journal of Theoretical Biology 45:339-377.PubMedCrossRefGoogle Scholar
  58. Penning de Vries, F.W.T. 1975. The cost of maintenance processes in plant cells. Annals of Botany 39:77-92.Google Scholar
  59. Poorter, H. 1994. Construction costs and payback time of biomass: A whole-plant perspective. Pages 111-127 in J. Roy and E. Garnier, editors. A Whole-Plant Perspective on Carbon-Nitrogen Interactions. SPB Academic Publishing, The Hague.Google Scholar
  60. Rastetter, E.B. and G.R. Shaver. 1992. A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157-1174.CrossRefGoogle Scholar
  61. Read, D.J. 1991. Mycorrhizas in ecosystems. Experientia 47:376-391.CrossRefGoogle Scholar
  62. Reynolds, J.F. and J.H.M. Thornley. 1982. A shoot:root partitioning model. Annals of Botany 49:585-597.Google Scholar
  63. Reynolds, J.F., D.W. Hilbert, and P.R. Kemp. 1993. Scaling ecophysiology from the plant to the ecosystem: A conceptual framework. Pages 127-140 in J.R. Ehleringer and C.B. Field, editors. Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego.CrossRefGoogle Scholar
  64. Ruess, R.W., K. Van Cleve, J. Yarie, and L.A. Viereck. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior taiga forests on the Alaskan interior. Canadian Journal of Forest Research 26:1326-1336.CrossRefGoogle Scholar
  65. Ruess, R.W., R.L. Hendrick, and J.P. Bryant. 1998. Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79:2706-2720.CrossRefGoogle Scholar
  66. Ryan, M.G., S. Linder, J.M. Vose, and R.M. Hubbard. 1994. Respiration of pine forests. Ecological Bulletin 43:50-63.Google Scholar
  67. Ryan, M.G., D. Binkley, and J.H. Fownes. 1997. Age-related decline in forest productivity: Pattern and process. Advances in Ecological Research 27:213-262.CrossRefGoogle Scholar
  68. Saugier, B., J. Roy, and H.A. Mooney. 2001. Estimations of global terrestrial productivity: Converging toward a single number? Pages 543-557 in J. Roy, B. Saugier, and H.A. Mooney, editors. Terrestrial Global Productivity. Academic Press, San Diego.CrossRefGoogle Scholar
  69. Schindler, D.W. 1978. Factors regulating phytoplankton production and standing crop in the world's lakes. Limnology and Oceanography 23:478-486.CrossRefGoogle Scholar
  70. Schlesinger, W.H. 1997. Biogeochemistry: An Analysis of Global Change. 2nd edition. Academic Press, San Diego.Google Scholar
  71. Schuur, E.A.G. 2003. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 84:1165-1170.CrossRefGoogle Scholar
  72. Scurlock, J.M.O. and R.J. Olson. 2002. Terrestrial net primary productivity: A brief history and a new worldwide database. Environmental Reviews 10:91-109.CrossRefGoogle Scholar
  73. Semikhatova, O.A. 2000. Ecological physiology of plant dark respiration: Its past, present and future. Botanishcheskii Zhurnal 85:15-32.Google Scholar
  74. Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  75. Tilman, D. 1988. Plant Strategies and the Dynamics and Function of Plant Communities. Princeton University Press, Princeton.Google Scholar
  76. Valiela, I. 1995. Marine Ecological Processes. 2nd edition. Springer-Verlag, New York.CrossRefGoogle Scholar
  77. Van Cleve, K., W.C. Oechel, and J.L. Hom. 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forest Research 20:1530-1535.CrossRefGoogle Scholar
  78. Vander Zanden, M.J., T.E. Essington, and Y. Vadeboncoeur. 2005. Is pelagic top-down control in lakes augmented by benthic energy pathways? Canadian Journal of Fisheries and Aquatic Sciences 62:1422-1431.CrossRefGoogle Scholar
  79. Vander Zanden, M.J., S. Chandra, S.-K. Park, Y. Vadeboncoeur, and C.R. Goldman. 2006. Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences 63:2608-2620.CrossRefGoogle Scholar
  80. Villar, R., J.R. Robleto, Y. De Jong, and H. Poorter. 2006. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant, Cell and Environment 29:1629-1643.PubMedCrossRefGoogle Scholar
  81. Vitousek, P.M. and W.A. Reiners. 1975. Ecosystem succession and nutrient retention: A hypothesis. BioScience 25:376-381.CrossRefGoogle Scholar
  82. Vitousek, P.M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285-298.CrossRefGoogle Scholar
  83. Waring, R.H., J.J. Landsberg, and M. Williams. 1998. Net primary production of forests: A constant fraction of gross primary production? Tree Physiology 18:129-134.PubMedCrossRefGoogle Scholar
  84. Waring, R.H. and S.W. Running. 2007. Forest Ecosystems: Analysis at Multiple Scales. 3rd edition. Academic Press, San Diego.Google Scholar
  85. Webster, J.R., J.B. Wallace, and E.F. Benfield. 1995. Organic processes in streams of the eastern United States.in C.E. Cushing, G.W. Minshall, and K.W. Cummins, editors. Ecosystems of the World 22: River and Stream Ecosystems. Elsevier, Amsterdam.Google Scholar
  86. Woodward, F.I. 1987. Climate and Plant Distribution. Cambridge University Press, Cambridge.Google Scholar
  87. Zheng, D., S. Prince, and R. Wright. 2003. Terrestrial net primary production estimates for 0.5° grid cells from field observations: A contribution to global biogeochemical modeling. Global Change Biology 9:46-64.CrossRefGoogle Scholar
  88. Zimmermann, M.H. 1983. Xylem Structure and the Ascent of Sap. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Stuart ChapinIII
    • 1
  • Pamela A. Matson
    • 2
  • Peter M. Vitousek
    • 3
  1. 1.Institute of Arctic Biology Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksUSA
  2. 2.School of Earth SciencesStanford UniversityStanfordUSA
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations