Carbon Inputs to Ecosystems

  • F. Stuart ChapinIII
  • Pamela A. Matson
  • Peter M. Vitousek


Photosynthesis by plants provides the carbon and energy that drive most biological processes in ecosystems. This chapter describes the controls over carbon input to ecosystems.


Leaf Area Normalize Difference Vegetation Index Stomatal Conductance Gross Primary Production Specific Leaf Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ainsworth, E.A. and S.P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165:351-371.PubMedCrossRefGoogle Scholar
  2. Allan, J.D. and M.M. Castillo. 2007. Stream Ecology: Structure and Function of Running Waters. 2nd edition. Springer, Dordrecht.CrossRefGoogle Scholar
  3. Baldocchi, D.D. and J.S. Amthor. 2001. Canopy photosynthesis: History, measurements, and J. Roy, B. Saugier, and H.A. Mooney, editors. Terrestrial Global Productivity. Academic Press, San Diego.Google Scholar
  4. Baldocchi, D.D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9:479-492.CrossRefGoogle Scholar
  5. Bergh, J. and S. Linder. 1999. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biology 5:245-253.CrossRefGoogle Scholar
  6. Berry, J. and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491-543.CrossRefGoogle Scholar
  7. Billings, W.D. and H.A. Mooney. 1968. The ecology of arctic and alpine plants. Biological Review 43:481-529.CrossRefGoogle Scholar
  8. Canadell, J.G., C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitehuls, et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, USA 104:10288-10293.CrossRefGoogle Scholar
  9. Carpenter, S.R., J.J. Hodgson, J.F. Kitchell, M.L. Pace, D. Bade, et al. 2001. Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs 71:163-186.CrossRefGoogle Scholar
  10. Cerling, T.E. 1999. Paleorecords of C4 plants and ecosystems. Pages 445-469 in R.F. Sage and R.K. Monson, editors. C 4 Plant Biology. Academic Press, San Diego.CrossRefGoogle Scholar
  11. Chapin, F.S., III, D.A. Johnson, and J.D. McKendrick. 1980. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. Journal of Ecology 68:189-209.CrossRefGoogle Scholar
  12. Chazdon, R.L. and N. Fetcher. 1984. Photosynthetic light environments in a lowland rain forest in Costa Rica. Journal of Ecology 72:553-564.CrossRefGoogle Scholar
  13. Chazdon, R.L. and R.W. Pearcy. 1991. The importance of sunflecks for forest understory plants. BioScience 41:760-766.CrossRefGoogle Scholar
  14. Cole, J.J., N.F. Caracao, G.W. Kling, and T.K. Kratz. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568-1570.PubMedCrossRefGoogle Scholar
  15. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, et al. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171-184.CrossRefGoogle Scholar
  16. Craine, J.M. and P.B. Reich. 2005. Leaf-level light compensation points are lower in shade-tolerant woody seedlings: Evidence from a synthesis of 115 species. New Phytologist 166:710-713.PubMedCrossRefGoogle Scholar
  17. Craine, J.M. 2009. Resource Strategies of Wild Plants. Princeton University Press, Princeton.CrossRefGoogle Scholar
  18. Cunningham, S.A., B. Summerhayes, and M. Westoby. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs 69:569-588.CrossRefGoogle Scholar
  19. Curtis, P.S. and X. Wang. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299-313.CrossRefGoogle Scholar
  20. Demming-Adams, B. and W.W. Adams. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Sciences 1:21-26.CrossRefGoogle Scholar
  21. Edwards, E.J. and S.A. Smith. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences, USA 107:2532-2537.CrossRefGoogle Scholar
  22. Ehleringer, J.R. and H.A. Mooney. 1978. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183-200.CrossRefGoogle Scholar
  23. Ehleringer, J.R. and C.B. Osmond. 1989. Stable isotopes. Pages 281-300 in R.W. Pearcy, J. Ehleringer, H.A. Mooney, and P.W. Rundel, editors. Plant Physiological Ecology: Field Methods and Instrumentation. Chapman and Hall, London.CrossRefGoogle Scholar
  24. Ehleringer, J.R. 1993. Carbon and water relations in desert plants: An isotopic perspective. Pages 155-172 in J.R. Ehleringer, A.E. Hall, and G.D. Farquhar, editors. Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego.CrossRefGoogle Scholar
  25. Ehleringer, J.R., A.E. Hall, and G.D. Farquhar, editors. 1993. Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego.Google Scholar
  26. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19.CrossRefGoogle Scholar
  27. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33:317-345.CrossRefGoogle Scholar
  28. Field, C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56:341-347.CrossRefGoogle Scholar
  29. Field, C. and H.A. Mooney. 1986. The photosynthesis-nitrogen relationship in wild plants. Pages 25-55 in T.J. Givnish, editor. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge.Google Scholar
  30. Field, C.B. 1991. Ecological scaling of carbon gain to stress and resource availability. Pages 35-65 in H.A. Mooney, W.E. Winner, and E.J. Pell, editors. Integrated Responses of Plants to Stress. Academic Press, San Diego.CrossRefGoogle Scholar
  31. Flynn, K.J. 2003. Do we need complex mechanistic phytoacclimation models for phytoplankton? Limnology and Oceanography 48:2243-2249.CrossRefGoogle Scholar
  32. Golley, F. 1961. Energy values of ecological materials. Ecology 42:581-584.CrossRefGoogle Scholar
  33. Gower, S.T., C.J. Kucharik, and J.M. Norman. 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sensing of the Environment 70:29-51.CrossRefGoogle Scholar
  34. Graetz, R.D. 1991. The nature and significance of the feedback of change in terrestrial vegetation on global atmospheric and climatic change. Climatic Change 18:147-173.CrossRefGoogle Scholar
  35. Gulmon, S.L. and H.A. Mooney. 1986. Costs of defense on plant productivity. Pages 681-698 in T.J. Givnish, editor. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, U.K.Google Scholar
  36. Heinsch, F.A., M. Zhao, S.W. Running, J.S. Kimball, R.R. Nemani, et al. 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing 44:1908-1925.CrossRefGoogle Scholar
  37. Hirose, T. and M.J.A. Werger. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520-526.CrossRefGoogle Scholar
  38. Jarvis, P.G. and J.W. Leverenz. 1983. Productivity of temperate, deciduous and evergreen forests. Pages 233-280 in O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler, editors. Encyclodedia of Plant Physiology, New Series. Springer-Verlag, Berlin.Google Scholar
  39. Kalff, J. 2002. Limnology. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  40. Keeley, J.E. 1990. Photosynthetic pathways in freshwater aquatic plants. Trends in Ecology & Evolution 5:330-333.CrossRefGoogle Scholar
  41. Killingbeck, K.T. and W.G. Whitford. 1996. High foliar nitrogen in desert shrubs: An important ecosystem trait or defective desert doctrine? Ecology 77:1728-1737.CrossRefGoogle Scholar
  42. Kling, G.W., G.W. Kipphut, and M.C. Miller. 1991. Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets. Science 251:298-301.PubMedCrossRefGoogle Scholar
  43. Körner, C., J.A. Scheel, and H. Bauer. 1979. Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45-82.Google Scholar
  44. Körner, C. and W. Larcher. 1988. Plant life in cold climates. Symposium of the Society of Experimental Biology 42:25-57.Google Scholar
  45. Körner, C. 1999. Alpine Plant Life. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  46. Kortelainen, P., M. Rantakari, J.T. Huttunen, T. Mattsson, J. Alm, et al. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12:1554-1567.CrossRefGoogle Scholar
  47. Lafont, S., L. Kergoat, G. Dedieu, A. Chevillard, U. Karstens, et al. 2002. Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus B 4:820-833.CrossRefGoogle Scholar
  48. Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:187-261.CrossRefGoogle Scholar
  49. Lambers, H., F.S. Chapin, III, and T.L. Pons. 2008. Plant Physiological Ecology. 2nd edition. Springer, New York.CrossRefGoogle Scholar
  50. Landsberg, J.J. and S.T. Gower. 1997. Applications of Physiological Ecology to Forest Management. Academic Press, San Diego.Google Scholar
  51. Larcher, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 4th edition. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Law, B.E., E. Falge, L. Gu, D.D. Baldocchi, P. Bakwin, et al. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology 113:97-120.CrossRefGoogle Scholar
  53. Los, S.O., G.J. Collatz, P.J. Sellers, C.M. Malmström, N.H. Pollack, et al. 2000. A global 9-yr biophysical land surface dataset from NOAA AVHRR data. Journal of Hydrometeorology 1:183-199.CrossRefGoogle Scholar
  54. Luyssaert, S., I. Inglima, M. Jung, A.D. Richardson, M. Reichstein, et al. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13:2509-2537.CrossRefGoogle Scholar
  55. Mann, K.H. and J.R.N. Lazier. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Third edition. Blackwell Publishing, Victoria, Australia.Google Scholar
  56. McNaughton, K.G. and P.G. Jarvis. 1991. Effects of spatial scale on stomatal control of transpiration. Agricultural and Forest Meteorology 54:279-302.CrossRefGoogle Scholar
  57. Mooney, H.A. 1972. The carbon balance of plants. Annual Review of Ecology and Systematics 3:315-346.CrossRefGoogle Scholar
  58. Mooney, H.A. 1986. Photosynthesis. Pages 345-373 in M.J. Crawley, editor. Plant Ecology. Blackwell, Oxford.Google Scholar
  59. Mooney, H.A., J. Canadell, F.S. Chapin, III, J.R. Ehleringer, C. Körner, et al. 1999. Ecosystem physiology responses to global change. Pages 141-189 in B. Walker, W. Steffen, J. Canadell, and J. Ingram, editors. The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  60. Naiman, R.J., H. Décamps, and M.E. McClain. 2005. Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Amsterdam.Google Scholar
  61. O'Leary, M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:325-336.CrossRefGoogle Scholar
  62. Osborne, C.P. and R.P. Freckleton. 2009. Ecological selection pressures for C4 photosynthesis.,. Proceedings of The Royal Society, Series B 276:1753-1760.Google Scholar
  63. Pearcy, R.W. 1990. Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology 41:421-453.CrossRefGoogle Scholar
  64. Power, M.E. 1992b. Top-down and bottom-up forces in food webs: Do plants have primacy? Ecology 73:733-746.CrossRefGoogle Scholar
  65. Reich, P.B., M.B. Walters, and D.S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences USA 94:13730-13734.CrossRefGoogle Scholar
  66. Reich, P.B., D.S. Ellsworth, M.B. Walters, J.M. Vose, C. Gresham, et al. 1999. Generality of leaf trait relationships: A test across six biomes. Ecology 80:1955-1969.CrossRefGoogle Scholar
  67. Reynolds, J.F. and D.M. Stafford Smith, editors. 2002. Global Desertification: Do Humans Cause Deserts? Dahlem University Press, Berlin.Google Scholar
  68. Ruimy, A., P.G. Jarvis, D.D. Baldocchi, and B. Saugier. 1995. CO2 fluxes over plant canopies and solar radiation: A review. Advances in Ecological Research 26:1-53.CrossRefGoogle Scholar
  69. Running, S.W., P.E. Thornton, R.R. Nemani, and J.M. Glassy. 2000. Global terrestrial gross and net primary productivity from the earth observing system. Pages 44-57 in O. Sala, R.B. Jackson, and H.A. Mooney, editors. Methods in Ecosystem Science. Springer-Verlag, New York.CrossRefGoogle Scholar
  70. Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, et al. 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54:547-560.CrossRefGoogle Scholar
  71. Sage, R.F. 2004. The evolution of C4 photosynthesis. New Phytologist 161:341-370.CrossRefGoogle Scholar
  72. Saleska, S.R., K. Didan, A.R. Huete, and H.R. da Rocha. 2007. Amazon forests green-up during 2005 drought. Science 318:612.PubMedCrossRefGoogle Scholar
  73. Schippers, P., M. Lurling, and M. Scheffer. 2004. Increase in atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7:446-451.CrossRefGoogle Scholar
  74. Schulze, E.-D. and F.S. Chapin, III. 1987. Plant specialization to environments of different resource availability. Pages 120-148 in E.-D. Schulze and H. Zwolfer, editors. Potentials and Limitations in Ecosystem Analysis. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  75. Schulze, E.-D., F.M. Kelliher, C. Körner, J. Lloyd, and R. Leuning. 1994. Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annual Review of Ecology and Systematics 25:629-660.CrossRefGoogle Scholar
  76. Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  77. Still, C.J., J.A. Berry, G.J. Collatz, and R.S. DeFries. 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles 17:doi:10.1029/2001GB001807.Google Scholar
  78. Terashima, I. and K. Hikosaka. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment 18:1111-1128.CrossRefGoogle Scholar
  79. Teskey, R.O., D.W. Sheriff, and D.Y. Hollinger. 1995. External and internal factors regulating photosynthesis in W.K. Smith and T.M. Hinkley, editors. Resources and Physiology of Conifers: Acquisition, Allocation, and Utilization. Academic Press, San Diego.Google Scholar
  80. Thornton, K.W., B.L. Kimmel, and F.E. Payne. 1990. Reservoir Limnology: Ecological Perspectives. John Wiley and Sons, New York.Google Scholar
  81. Thurman, H.V. 1991. Introductory Oceanography. 6th edition. MacMillan Publishing Company, New York.CrossRefGoogle Scholar
  82. Turner, D.P., S. Urbanski, D. Bremer, S.C. Wofsy, T. Meyers, et al. 2003b. A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology 9:383-395.CrossRefGoogle Scholar
  83. Turner, D.P., W.D. Ritts, W.B. Cohen, T.K. Maeirsperger, S.T. Gower, et al. 2005. Site-level evaluation of satellite-based global terrestrial primary production and net primary production monitoring. Global Change Biology 11:666-684.CrossRefGoogle Scholar
  84. Vadeboncoeur, Y., M.J. Vander Zanden, and D.M. Lodge. 2002. Putting the lake back together: Reintegrating benthic pathways into lake food web models. BioScience 52:44-54.CrossRefGoogle Scholar
  85. Vadeboncoeur, Y., G.D. Peterson, M.J. Vander Zanden, and J. Kalff. 2008. Benthic algal production across lake size gradients: Interactions among morphometry, nutrients, and light. Ecology 89:2542-2552.PubMedCrossRefGoogle Scholar
  86. Valiela, I. 1995. Marine Ecological Processes. 2nd edition. Springer-Verlag, New York.CrossRefGoogle Scholar
  87. Vander Zanden, M.J., S. Chandra, S.-K. Park, Y. Vadeboncoeur, and C.R. Goldman. 2006. Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences 63:2608-2620.CrossRefGoogle Scholar
  88. Verbyla, D.L. 1995. Satellite Remote Sensing of Natural Resources. CRC Press, Boca Raton, Florida.Google Scholar
  89. Walters, M.B. and P.B. Reich. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143:143-154.CrossRefGoogle Scholar
  90. Waring, R.H. and S.W. Running. 2007. Forest Ecosystems: Analysis at Multiple Scales. 3rd edition. Academic Press, San Diego.Google Scholar
  91. White, M.A., P.E. Thornton, S.W. Running, and R.R. Nemani. 2000. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions 4:1-85.CrossRefGoogle Scholar
  92. Williamson, C.E., R.S. Sternberger, D.P. Morris, T.M. Frost, and S.G. Paulsen. 1996. Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities. Limnology and Oceanography 41:1024-1034.CrossRefGoogle Scholar
  93. Winner, W.E., H.A. Mooney, K. Williams, and S. von Caemmerer. 1985. Measuring and assessing SO2 effects on photosynthesis and plant growth. Pages 118-132 in W.E. Winner and H.A. Mooney, editors. Sulfur Dioxide and Vegetation. Stanford University Press, Stanford, California.Google Scholar
  94. Wright, I.J., P.B. Reich, and M. Westoby. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15:423-434.CrossRefGoogle Scholar
  95. Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Barusch, et al. 2004. The world-wide leaf economics spectrum. Nature 428:821-827.PubMedCrossRefGoogle Scholar
  96. Xiao, J., Q. Zhuang, B.E. Law, J. Chen, D.D. Baldocchi, et al. 2010. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment 114:576-591.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Stuart ChapinIII
    • 1
  • Pamela A. Matson
    • 2
  • Peter M. Vitousek
    • 3
  1. 1.Institute of Arctic Biology Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksUSA
  2. 2.School of Earth SciencesStanford UniversityStanfordUSA
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations