Water and Energy Balance

  • F. Stuart ChapinIII
  • Pamela A. Matson
  • Peter M. Vitousek


The hydrologic cycle, driven by solar energy, is the master cycle that drives all other ­biogeochemical cycles. This chapter describes ­ecosystem energy budgets and other controls over the hydrologic cycle.


Water Potential Stomatal Conductance Latent Heat Flux Longwave Radiation Bowen Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aston, A.R. 1979. Rainfall interception by eight small trees.Journal of Hydrology42:383-396.CrossRefGoogle Scholar
  2. Ataroff, M. and M.E. Naranjo. 2009. Interception of water by pastures ofPennisetum clandestinumHochst ex Chiov. andMelinus minutifloraBeauv.Agricultural and Forest Meteorology149:1616-1620.CrossRefGoogle Scholar
  3. Baldocchi, D.D., L. Xu, and N. Kiang. 2004. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland.Agricultural and Forest Meteorology123:13-39.CrossRefGoogle Scholar
  4. Berry, W.L. 1970. Characteristics of salts secreted byTamarix aphylla.American Journal of Botany57:1226-1230.CrossRefGoogle Scholar
  5. Bonan, G.B. 2008.Ecological Climatology: Principles and Applications. 2ndedition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  6. Borchert, R. 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees.Ecology75:1437-1449.CrossRefGoogle Scholar
  7. Bormann, F.H. and G.E. Likens. 1979.Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.CrossRefGoogle Scholar
  8. Burgess, S.S.O., M.A. Adams, N.C. Turner, and C.K. Ong. 1998. The redistribution of soil water by tree root systems.Oecologia115:306-311.CrossRefGoogle Scholar
  9. Caldwell, M.M. and J.H. Richards. 1989. Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake from deep roots.Oecologia79:1-5.CrossRefGoogle Scholar
  10. Canadell, J., R.B. Jackson, J.R. Ehleringer, H.A. Mooney, O.E. Sala, et al. 1996. Maximum rooting depth of vegetation types at the global scale.Oecologia108:585-595.CrossRefGoogle Scholar
  11. Carpenter, S.R. and R. Biggs. 2009. Freshwaters: Managing across scales in space and time. Pages 197-220inF.S. Chapin, III, G.P. Kofinas, and C. Folke, editors.Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World. Springer, New York.CrossRefGoogle Scholar
  12. Chapin, F.S., III, W. Eugster, J.P. McFadden, A.H. Lynch, and D.A. Walker. 2000a. Summer differences among arctic ecosystems in regional climate forcing.Journal of Climate13:2002-2010.CrossRefGoogle Scholar
  13. Chapin, F.S., III, M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, et al. 2005. Role of land-surface changes in arctic summer warming.Science310:657-660.PubMedCrossRefGoogle Scholar
  14. Chase, T.N., R.A. Pielke, Sr., T.G.F. Kittel, R.R. Nemani, and S.W. Running. 2000. Simulated impacts of historical land cover changes on global climate in northern winter.Climate Dynamics16:93-105.CrossRefGoogle Scholar
  15. Craine, J.M. 2009.Resource Strategies of Wild Plants. Princeton University Press, Princeton.CrossRefGoogle Scholar
  16. Dawson, T.E. 1993. Water sources of plants as determined from xylem-water isotopic composition: Perspectives on plant competition, distribution, and water relations. Pages 465-496inJ.R. Ehleringer, A.E. Hall, and G.D. Farquhar, editors.Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego.CrossRefGoogle Scholar
  17. Dawson, T.E. and T.W. Siegwolf. 2007.Stable Isotopes as Indicators of Ecological Change. Academic Press-Elsevier, San Diego.Google Scholar
  18. Dingman, S.L. 2001.Physical Hydrology. 2ndedition. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  19. Eugster, W., W.R. Rouse, R.A. Pielke, J.P. McFadden, D.D. Baldocchi, et al. 2000. Land-atmosphere energy exchange in arctic tundra and boreal forest: Available data and feedbacks to climate.Global Change Biology6 (Suppl. 1):84-115.CrossRefGoogle Scholar
  20. Euskirchen, E.S., A.D. McGuire, and F.S. Chapin, III. 2007. Energy feedbacks to the climate system due to reduced high latitude snow cover during 20thcentury warming.Global Change Biology13:2425-2438.CrossRefGoogle Scholar
  21. Ewing, H.A., K.C. Weathers, P.H. Templer, T.E. Dawson, M.K. Firestone, et al. 2009. Fog water and ecosystem function: Heterogeneity in a California redwood forest.Ecosystems12:417-433.CrossRefGoogle Scholar
  22. Foley, J.A., J.E. Kutzbach, M.T. Coe, and S. Levis. 1994. Feedbacks between climate and boreal forests during the Holocene epoch.Nature371:52-54.CrossRefGoogle Scholar
  23. Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, et al. 2005. Global consequences of land use.Science309:570-574.PubMedCrossRefGoogle Scholar
  24. Gardner, W.R. 1983. Soil properties and efficient water use: An overview. Pages 45-64inH.M. Taylor, W.R. Jordan, and T.R. Sinclair, editors.Limitations to Efficient Water Use in Crop Production. American Society of Agronomy, Madison.Google Scholar
  25. Gilliam, F.S., T.R. Seastedt, and A.K. Knapp. 1987. Canopy rainfall interception and throughfall in burned and unburned tallgrass prairie.Southwestern Naturalist32:267-271.CrossRefGoogle Scholar
  26. Hollinger, D.Y., S.V. Ollinger, A.D. Richardson, T.P. Meyers, D.B. Dail, et al. 2010. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration.Global Change Biology16:696-710.CrossRefGoogle Scholar
  27. Hutley, L.B., D. Doley, D.J. Yates, and A. Boonsaner. 1997. Water-balance of an Australian subtropical rain-forest at altitude: The ecological and physiological significance of intercepted cloud and fog.Australian Journal of Botany45:311-329.CrossRefGoogle Scholar
  28. Jackson, R.B., J. Canadell, J.R. Ehleringer, H.A. Mooney, O.E. Sala, et al. 1996. A global analysis of root distributions for terrestrial biomes.Oecologia108:389-411.CrossRefGoogle Scholar
  29. Jackson, R.B., J.S. Sperry, and T.E. Dawson. 2000. Root water uptake and transport: Using physiological processes in global predictions.Trends in Plant Science5:482-488.PubMedCrossRefGoogle Scholar
  30. Jackson, R.B., E.G. Jobbágy, R. Avissar, S.B. Roy, D.J. Barrett, et al. 2005. Trading water for carbon with biological carbon sequestration.Science310:1944-1947.PubMedCrossRefGoogle Scholar
  31. Jarvis, P.G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.Philosophical Transactions of the Royal Society of London, Series B273:593-610.CrossRefGoogle Scholar
  32. Jarvis, P.G. and K.G. McNaughton. 1986. Stomatal control of transpiration: Scaling up from leaf to region.Advances in Ecological Research15:1-49.CrossRefGoogle Scholar
  33. Jones, H.G. 1992.Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2ndedition. Cambridge University Press, Cambridge.Google Scholar
  34. Jones, J.A. 2000. Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in ten small experimental basins, western Cascades, Oregon.Water Resources Research36:2621-2642.CrossRefGoogle Scholar
  35. Jones, J.A. and D.A. Post. 2004. Seasonal and successional streamflow response to forest cutting and regrowth in the northwest and eastern United States.Water Resources Research40:W05203, doi: 05210.01029/02003WR002952.CrossRefGoogle Scholar
  36. Kalff, J. 2002.Limnology. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  37. Kelliher, F.M., R. Leuning, M.R. Raupach, and E.-D. Schulze. 1995. Maximum conductances for evaporation from global vegetation types.Agricultural and Forest Meteorology73:1-16.CrossRefGoogle Scholar
  38. Kelliher, F.M. and R. Jackson. 2001. Evaporation and the water balance. Pages 206-217inA. Sturman and R. Spronken-Smith, editors.The Physical Environment: A New Zealand Perspective. Oxford University Press, Melbourne, Australia.Google Scholar
  39. Körner, C., J.A. Scheel, and H. Bauer. 1979. Maximum leaf diffusive conductance in vascular plants.Photosynthetica13:45-82.Google Scholar
  40. Körner, C. 1994. Leaf diffusive conductances in the major vegetation types of the globe. Pages 463-490inE.-D. Schulze and M.M. Caldwell, editors.Ecophysiology of Photosynthesis. Springer-Verlag, Berlin.Google Scholar
  41. Kramer, P.J. and J.S. Boyer. 1995.Water Relations of Plants and Soils. Academic Press, San Diego.Google Scholar
  42. Lambers, H., F.S. Chapin, III, and T.L. Pons. 2008.Plant Physiological Ecology. 2ndedition. Springer, New York.CrossRefGoogle Scholar
  43. Larcher, W. 2003.Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 4thedition. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  44. Limm, E.B., K.A. Simonin, A.G. Bothman, and T.E. Dawson. 2009. Foliar water uptake: A common water acquisition strategy for plants of the redwood forest.Oecologia161:449-459.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Liston, G.E. and M. Sturm. 1998. A snow-transport model for complex terrain.Journal of Glaciology44:498-516.Google Scholar
  46. Lytle, D.A. and N.L. Poff. 2004. Adaptation to natural flow regimes.Trends in Ecology & Evolution19:94-100.CrossRefGoogle Scholar
  47. Margolis, H., R. Oren, D. Whitehead, and M.R. Kaufmann. 1995. Leaf area dynamics of conifer forests. Pages 181-223inW.K. Smith and T.M. Hinckley, editors.Ecophysiology of Coniferous Forests. Academic Press, San Diego.CrossRefGoogle Scholar
  48. Mark, A.F. and K.J.M. Dickinson. 2008. Maximizing water yield with indigenous non-forest vegetation: A New Zealand perspective.Frontiers in Ecology and the Environment6:25-34.CrossRefGoogle Scholar
  49. McDowell, N., W.T. Pockman, C.D. Allen, D.D. Breshears, N. Cobb, et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist178:719-739.PubMedCrossRefGoogle Scholar
  50. McNaughton, K.G. 1976. Evaporation and advection I: Evaporation from extensive homogeneous surfaces.Quarterly Journal of the Royal Meteorological Society102:181-191.CrossRefGoogle Scholar
  51. Monserud, R.A. and J.D. Marshall. 1999. Allometric crown relations in three northern Idaho conifer species.Canadian Journal of Forest Research29:521-535.CrossRefGoogle Scholar
  52. Monteith, J.L. and M.H. Unsworth. 2008.Principles of Environmental Physics. 3rdedition. Elsevier, Amsterdam.Google Scholar
  53. Moore, R.D. and S.M. Wondzell. 2005. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review.Journal of the American Water Resources Association41:763-784.CrossRefGoogle Scholar
  54. Nepstad, D.C., C.R. deCarvalho, E.A. Davidson, P.H. Jipp, P.A. Lefebvre, et al. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures.Nature372:666-669.CrossRefGoogle Scholar
  55. NRC. 2008.Hydrologic Effects of a Changing Forest Landscape. National Academies Press, Washington.Google Scholar
  56. Nulsen, R.A., K.J. Bligh, I.N. Baxter, E.J. Solin, and D.H. Imrie. 1986. The fate of rainfall in a mallee and heath vegetated catchment in southern Western Australia.Australian Journal of Ecology11:361-371.CrossRefGoogle Scholar
  57. Oke, T.R. 1987.Boundary Layer Climates. 2ndedition. Methuen, London.Google Scholar
  58. Oki, T. and S. Kanae. 2006. Global hydrological cycles and world water resources.Science313:1068-1072.PubMedCrossRefGoogle Scholar
  59. Passioura, J.B. 1988. Response to Dr. P. J. Kramer's article, 'Changing concepts regarding plant water relations'.Plant, Cell and Environment11:569-571.CrossRefGoogle Scholar
  60. Pielke, R.A., Sr. and R. Avisar. 1990. Influence of landscape structure on local and regional climate.Landscape Ecology4:133-156.CrossRefGoogle Scholar
  61. Poff, N.L., J.D. Allan, M.B. Bain, J.R. Karr, K.L. Prestegaard, et al. 1997. The natural flow regime: A paradigm for river conservation and restoration.BioScience47:769-784.CrossRefGoogle Scholar
  62. Pomeroy, J., N. Hedstrom, and J. Parviainen. 1999. The snow mass balance of Wolf Creek, Yukon: Effects of snow sublimation and redistribution. Pages 15-30inJ.W. Pomeroy and R.J. Granger, editors.Wolf Creek Research Basin: Hydrology, Ecology, Environment. National Water Research Institute, Environment Canada, Saskatoon.Google Scholar
  63. Power, M.E. 1992a. Hydrologic and trophic controls of seasonal algal blooms in northern California rivers.Archivs fur Hydrobiologie125:385-410.Google Scholar
  64. Rockström, J., L. Gordon, C. Folke, M. Falkenmark, and M. Engvall. 1999. Linkages among water vapor flows, food production, and terrestrial ecosystem services.Conservation Ecology3:[online] Scholar
  65. Rutter, A.J., P.C. Robins, A.J. Morton, and K.A. Kershaw. 1971. Predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine.Agricultural Meteorology9:367-384.Google Scholar
  66. Schenk, H.J. and R.B. Jackson. 2002. Rooting depths, lateral roos spreads and below-ground/above-ground allometries of plants in water-limited ecosystems.Journal of Ecology90:480-494.CrossRefGoogle Scholar
  67. Schulze, E.-D., R.H. Robichaux, J. Grace, P.W. Rundel, and J.R. Ehleringer. 1987. Plant water balance.BioScience37:30-37.CrossRefGoogle Scholar
  68. Schulze, E.-D., F.M. Kelliher, C. Körner, J. Lloyd, and R. Leuning. 1994. Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise.Annual Review of Ecology and Systematics25:629-660.CrossRefGoogle Scholar
  69. Seastedt, T.R. 1985. Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie.Oecologia66:88-92.CrossRefGoogle Scholar
  70. Sperry, J.S. 1995. Limitations on stem water transport and their consequences. Pages 105-124inB.L. Gartner, editor.Plant Stems: Physiology and Functional Morphology. Academic Press, San Diego.CrossRefGoogle Scholar
  71. Sperry, J.S., F.C. Meinzer, and K.A. McCulloh. 2008. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees.Plant, Cell & Environment31:632-635.CrossRefGoogle Scholar
  72. Sturm, M., J.P. McFadden, G.E. Liston, F.S. Chapin, III, J. Holmgren, et al. 2001. Snow-shrub interactions in arctic tundra: A feedback loop with climatic implications.Journal of Climate14:336-344.CrossRefGoogle Scholar
  73. Sturman, A.P. and N.J. Tapper. 1996.The Weather and Climate of Australia and New Zealand. Oxford University Press, Oxford.Google Scholar
  74. Sucoff, E. 1972. Water potential in red pine: Soil moisture, evapotranspiration, crown position.Ecology52:681-686.CrossRefGoogle Scholar
  75. Swank, W.T. and J.E. Douglass. 1974. Streamflow greatly reduced by converting deciduous hardwood stands to pine.Science185:857-859.PubMedCrossRefGoogle Scholar
  76. Trimble, S.W., F.H. Weirich, and B.L. Hoag. 1987. Reforestation reduces stream flow in the southeastern United States.Water Resource Research23:425-437.CrossRefGoogle Scholar
  77. Vörösmarty, C.J., C. Leveque, C. Revenga, R. Bos, C. Caudill, et al. 2005. Fresh water. Pages 165-207inR. Hassan, R.J. Scholes, and N. Ash, editors.Ecosystems and Human Well-Being: Current State and Trends, Volume 1. Island Press, Washington.Google Scholar
  78. Waring, R.H. and S.W. Running. 2007.Forest Ecosystems: Analysis at Multiple Scales. 3rdedition. Academic Press, San Diego.Google Scholar
  79. Weaver, C.P. and R. Avissar. 2001. Atmospheric disturbances caused by human modification of the landscape.Bulletin of the American Meteorological Society82:269-281.CrossRefGoogle Scholar
  80. Wilson, K.B., D.D. Baldocchi, M. Aubinet, P. Berbigier, C. Bernhofer, et al. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites.Water Resources Research38:1294, doi:1210.1029/2001WR000989.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Stuart ChapinIII
    • 1
  • Pamela A. Matson
    • 2
  • Peter M. Vitousek
    • 3
  1. 1.Institute of Arctic Biology Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksUSA
  2. 2.School of Earth SciencesStanford UniversityStanfordUSA
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations