Advertisement

Geology, Soils, and Sediments

  • F. Stuart ChapinIII
  • Pamela A. Matson
  • Peter M. Vitousek
Chapter

Abstract

Within a given climatic regime, soil properties are the major factor governing ecosystem processes. This chapter provides background on the factors regulating those soil and sediment properties that most strongly influence ecosystems as well as the transport of materials from land to rivers, lakes, and the ocean.

Keywords

Soil Organic Matter Soil Profile Cation Exchange Capacity Overland Flow Secondary Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amundson, R. and H. Jenny. 1997. On a state factor model of ecosystems.BioScience 47:536-543.CrossRefGoogle Scholar
  2. Amundson, R., D.D. Richter, G.S. Humphreys, E.G. Jobbágy, and J. Gaillardet. 2007. Coupling between biota and earth materials in the critical zone.Elements 3:327-332.CrossRefGoogle Scholar
  3. Andersson, T. 1991. Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns.Canadian Journal of Forest Research 21:917-924.CrossRefGoogle Scholar
  4. Baker, J.M., T.E. Ochsner, R.T. Veterea, and T.J. Griffis. 2007. Tillage and soil carbon sequestration. What do we really know?Agriculture, Ecosystems & Environment 118:1-5.CrossRefGoogle Scholar
  5. Berner, E.K., R.A. Berner, and K.L. Moulton. 2004. Plants and mineral weathering: Past and present. Pages 169-188in J.I. Drever, editor.Surface and Ground Water, Weathering, and Soils. Treatise on GeoChemistry 5. Elsevier, San Diego.Google Scholar
  6. Bettis, E.A., III, D.R. Muhs, H.M. Roberts, and A.G. Wintle. 2003. Last Glacial loess in the conterminous USA.Quaternary Science Reviews 22:1907-1946.CrossRefGoogle Scholar
  7. Birkeland, P.W. 1999.Soils and Geomorphology. Third edition. Oxford University Press, New York.Google Scholar
  8. Brady, N.C. and R.R. Weil. 2008.The Nature and Properties of Soils. 14th edition. Pearson Education, Inc., Upper Saddle River, NJ.Google Scholar
  9. Burke, I.C., C.M. Yonker, W.J. Parton, C.V. Cole, K. Flach, et al. 1989. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils.Soil Science Society of America Journal 53:800-805.CrossRefGoogle Scholar
  10. Burke, I.C., D.S. Schimel, C.M. Yonker, W.J. Parton, L.A. Joyce, et al. 1990. Regional modeling of grassland biogeochemistry using GIS.Landscape Ecology 4:45-54.CrossRefGoogle Scholar
  11. Church, M. 2002. Geomorphic thresholds in riverine landscapes.Freshwater Biology 47:541-557.CrossRefGoogle Scholar
  12. Crocker, R.L. and J. Major. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska.Journal of Ecology 43:427-448.CrossRefGoogle Scholar
  13. Dietrich, W.E. and J.T. Perron. 2006. The search for a topographic signature of life.Nature 439:411-418.PubMedCrossRefGoogle Scholar
  14. Driscoll, C.T., G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, et al. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies.BioScience 51:180-198.CrossRefGoogle Scholar
  15. Dunne, T., L.A.K. Mertes, R.H. Meade, J.E. Richey, and B.R. Forsberg. 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil.Geological Society of America Bulletin 110:450-467.CrossRefGoogle Scholar
  16. Fisher, R.F. and D. Binkley. 2000.Ecology and Management of Forest Soils. 3rd edition. John Wiley & Sons, Inc., New York.Google Scholar
  17. Grim, R.E. 1968.Clay Mineralogy. McGraw-Hill, New York.Google Scholar
  18. Hobbie, S.E. and P.M. Vitousek. 2000. Nutrient regulation of decomposition in Hawaiian montane forests: Do the same nutrients limit production and decomposition?Ecology 81:1867-1877.CrossRefGoogle Scholar
  19. Hooper, D.U. and P.M. Vitousek. 1998. Effects of plant composition and diversity on nutrient cycling.Ecological Monographs 68:121-149.CrossRefGoogle Scholar
  20. Howarth, R.W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and marine sediments.Biogeochemistry 1:5-27.CrossRefGoogle Scholar
  21. Jenny, H. 1941.Factors of Soil Formation. McGraw-Hill, New York.Google Scholar
  22. Jobbágy, E.G. and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications 10:423-436.CrossRefGoogle Scholar
  23. Livingston, G.P. and G.L. Hutchinson. 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. Pages 14-51in P.A. Matson and R.C. Harriss, editors.Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Scientific, Oxford.Google Scholar
  24. Matson, P.A., C. Volkmann, K. Coppinger, and W.A. Reiners. 1991. Annual nitrous oxide flux and soil nitrogen characteristics in sagebrush steppe ecosystems.Biogeochemistry 14:1-12.CrossRefGoogle Scholar
  25. Miller, R.W. and R.L. Donahue. 1990.Soils. An Introduction to Soils and Plant Growth. 6th edition. Prentice Hall, Englewood, USA.Google Scholar
  26. Milliman, J.D. and J.P.M. Syvitski. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountains and rivers.Journal of Geology 100:525-544.CrossRefGoogle Scholar
  27. Naiman, R.J., H. Décamps, and M.E. McClain. 2005.Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Amsterdam.Google Scholar
  28. Northup, R.R., Z. Yu, R.A. Dahlgren, and K.A. Vogt. 1995. Polyphenol control of nitrogen release from pine litter.Nature 377:227-229.CrossRefGoogle Scholar
  29. Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands.Soil Science Society of America Journal 51:1173-1179.CrossRefGoogle Scholar
  30. Paton, T.R., G.S. Humphreys, and P.B. Mitchell. 1995.Soils: A New Global View. Yale University Press, New Haven.Google Scholar
  31. Peters, D.P.C., R.A. Pielke, Sr., B.T. Bestelmeyer, C.D. Allen, S. Munson-McGee, et al. 2004. Cross-scale interactions, nonlinearities, and forecasting catastrophic events.Proceedings of the National Academy of Sciences, USA 101:15130-15135.CrossRefGoogle Scholar
  32. Porder, S., A. Paytan, and P.M. Vitousek. 2005. Erosion and landscape development affect plant nutrient status in the Hawaiian Islands.Oecologia 142:440–449.PubMedCrossRefGoogle Scholar
  33. Post, W.M., W.R. Emanuel, P.J. Zinke, and A.G. Stangenberger. 1982. Soil carbon pools and world life zones.Nature 298:156-159.CrossRefGoogle Scholar
  34. Press, F. and R. Siever. 1986.Earth. 4th edition. W. H. Freeman and Company, New York.Google Scholar
  35. Richter, D.D., Jr. and D. Markewitz. 2001.Understanding Soil Change: Soil Sustainability over Millennia, Centuries, and Decades. Cambridge University Press, Cambridge.Google Scholar
  36. Schlesinger, W.H. 1997.Biogeochemistry: An Analysis of Global Change. 2nd edition. Academic Press, San Diego.Google Scholar
  37. Schubert, S.D., M.J. Suarez, P.J. Pegion, R.D. Koster, and J.T. Bacmeister. 2004. On the cause of the 1930s dust bowl.Science 303:1855-1859.PubMedCrossRefGoogle Scholar
  38. Schulze, E.-D. 1989. Air pollution and forest decline in a spruce (Picea abies) forest.Science 244:776-783.PubMedCrossRefGoogle Scholar
  39. Selby, M.J. 1993.Hillslope Materials and Processes. 2nd edition. Oxford University Press, Oxford.Google Scholar
  40. Sun, J.M., K.E. Kohfield, and S.P. Harrison. 2000.Records of aeolian dust deposition on the Chinese Loess Plateau during the Quaternary. Max-Planck Instutut für Biogeochemie Technical Reports.Google Scholar
  41. Syvitski, J.P.M., C.J. Vörösmarty, A.J. Kettner, and P.A. Green. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean.Science 308:376-380.PubMedCrossRefGoogle Scholar
  42. Thomas, W.A. 1969. Accumulation and cycling of calcium by dogwood trees.Ecological Monographs 39:101–120.CrossRefGoogle Scholar
  43. Uehara, G. and G. Gillman. 1981.The Minerology, Chemistry, and Physics of Tropical Soils with Variable Charge Clays. Westview Press, Boulder.Google Scholar
  44. Ugolini, F.C. and H. Spaltenstein. 1992. Pedosphere. Pages 123-153in S.S. Butcher, R.J. Charlson, G.H. Orians, and G.V. Wolfe, editors.Global Biogeochemical Cycles. Academic Press, London.CrossRefGoogle Scholar
  45. Van Cleve, K., F.S. Chapin, III, C.T. Dyrness, and L.A. Viereck. 1991. Element cycling in taiga forest: State-factor control.BioScience 41:78-88.CrossRefGoogle Scholar
  46. Vitousek, P.M., L.R. Walker, L.D. Whiteaker, D. Mueller-Dombois, and P.A. Matson. 1987. Biological invasion byMyrica faya alters ecosystem development in Hawai’i.Science 238:802-804.PubMedCrossRefGoogle Scholar
  47. Vitousek, P.M. 2004.Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton.Google Scholar
  48. Walker, T.W. and J.K. Syers. 1976. The fate of phosphorus during pedogenesis.Geoderma 15:1-19.CrossRefGoogle Scholar
  49. Wedin, D.A. and D. Tilman. 1990. Species effects on nitrogen cycling: A test with perennial grasses.Oecologia 84:433-441.CrossRefGoogle Scholar
  50. Whittaker, R.H. and W.A. Niering. 1965. Vegetation of the Santa Catalina Mountains, Arizona. (II) A gradient analysis of the south slope.Ecology 46:429-452.CrossRefGoogle Scholar
  51. Wilson, G.W.T., W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments.Ecology Letters 12:452-461.PubMedCrossRefGoogle Scholar
  52. Yoo, K., R. Amundson, A.M. Heimsath, and W.E. Dietrich. 2005. Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness.Geology 33:917-920.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Stuart ChapinIII
    • 1
  • Pamela A. Matson
    • 2
  • Peter M. Vitousek
    • 3
  1. 1.Institute of Arctic Biology Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksUSA
  2. 2.School of Earth SciencesStanford UniversityStanfordUSA
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations