Skip to main content

Local Motility, Flow and Mixing in Tubular Segments of the Gut

  • Chapter
  • First Online:
Book cover The Physical Processes of Digestion

Abstract

The contractile activity within the various tubular segments of the gut is reviewed in the first two chapters which describe motility in intestinal segments of increasingly complex form and function. Firstly, the characteristics of propulsive contractions in segments that act simply as conduits are described including those in which contractions bring about pressure-driven extrusion of material from the segment i.e. the pharynx and rectum, and that in which material is propelled piecemeal by simple propagating peristaltic contractions i.e. the oesophagus. The sequencing of these contractile events, their effects on lumen contents and their variation with the physical state of the contents are described. The various contractile activities of the small intestine that are concerned both with propulsion and mixing are then described with detailed descriptions of the contractile constituents of peristalsis, segmentation and pendular movements along with their effects on lumen contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen ML, Zamani S, Dimarino AJ (2003) The effect of gravity on oesophageal peristalsis inhumans. Neurogastroenterol Mot 9:71-76

    Google Scholar 

  • Alvarez WC, Zimmermann A (1927) The absence of inhibition ahead of peristaltic rushes. Am J Physiol 83:52-59

    Google Scholar 

  • Anderson DJ, Hector MP, Linden RW (1985) The possible relation between mastication and parotid secretion in the rabbit. J Physiol 364:19-29

    CAS  Google Scholar 

  • Balaban DH, Yamamoto Y, Liu J, Pehlivanov N, Wisniewski R, DeSilvey D, Mittal RK (1999) Sustained esophageal contraction: A marker of esophageal chest pain identified by intraluminal ultrasonography. Gastroenterology 116:29-37

    CAS  Google Scholar 

  • Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99-143

    CAS  Google Scholar 

  • Beyak MJ, Collman PI, Valdez DT, Xue S, Diamant NE (1997) Superior laryngeal nerve stimulation in the cat: Effect on oropharyngeal swallowing, oesophageal motility and lower oesophageal sphincter activity. Neurogastroenterol Mot 9:117-127

    CAS  Google Scholar 

  • Boeckxstaens GE (2005) The lower oesophageal sphincter. Neurogastroenterol Mot 17:13-21

    Google Scholar 

  • Bogeski G, Shafton AD, Kitchener PD, Ferens DM, Furness JB (2005) A quantitative approach to recording peristaltic activity from segments of rat small intestine in vivo. Neurogastroenterol Mot 17:262-272

    CAS  Google Scholar 

  • Bornstein JC, Furness JB, Kunze WAA, Bertrand PP (2002) Enteric reflexes that influence motility. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor & Francis, London

    Google Scholar 

  • Bosma JF (1957) Deglutition: Pharyngeal stage. Physiol Rev 37:275-300

    CAS  Google Scholar 

  • Brookes S, Costa M (2002) Innervation of the gastrointestinal tract. Taylor & Francis, London

    Google Scholar 

  • Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731-743

    Google Scholar 

  • Buthpitiya AG, Stroud D, Russell COH (1987) Pharyngeal pump and esophageal transit. Dig Dis Sci 32:1244-1248

    CAS  Google Scholar 

  • Cannon WB (1902) The movements of the intestines studied by means of the roentgen rays. Am J Physiol 6:251-277

    Google Scholar 

  • Cannon WB (1912) Peristalsis, segmentation, and the myenteric reflex. Am J Physiol 30:114-128

    Google Scholar 

  • Cannon WB (1906) The motor activities of the stomach and small intestine after splanchnic and vagus section. Am J Physiol 17:429-442

    Google Scholar 

  • Castelain C, Mokrani A, Legentilhomme P, Peerhossaini H (1997) Residence time distribution in twisted pipe flows: helically coiled system and chaotic system. Exp Fluids 22:359–368

    CAS  Google Scholar 

  • Christensen J (1993) The enteric nervous system. In: Kumar D, Wingate D (eds) An illustrated guide to gastrointestinal motility. Churchill Livingstone, Edinburgh, pp 10-31

    Google Scholar 

  • Clouse R, Diamant N (2006) Motor function of the esophagus. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego pp 913–926

    Google Scholar 

  • Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ (1989) Opening mechanisms of the human upper esophageal sphincter. Am J Physiol 257:G748-759

    CAS  Google Scholar 

  • Costa M, Brookes SJH, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47:iv15-iv19

    Google Scholar 

  • Dantas RO, Dodds WJ, Massey BT, Shaker R, Cook IJ (1990) Manometric characteristics of glossopalatal sphincter. Dig Dis Sci 35:161-166

    CAS  Google Scholar 

  • De Backer O, Blanckaert B, Leybaert L, Lefebvre RA (2008) A novel method for the evaluation of intestinal transit and contractility in mice using fluorescence imaging and spatiotemporal motility mapping. Neurogastroenterol Mot 20:700-707

    Google Scholar 

  • DeSesso JM, Jacobson CF (2001) Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 39:209-228

    CAS  Google Scholar 

  • Dixon AD (1963) Nerve plexuses in the oral mucosa. Arch Oral Biol 8:435-444

    CAS  Google Scholar 

  • Dodds WJ, Christensen J, Dent J, Wood JD, Arndorfer RC (1978a) Esophageal contractions induced by vagal stimulation in the opossum. Am J Physiol 235:E392-401

    CAS  Google Scholar 

  • Dodds WJ, Hogan WJ, Reid DP, Stewart ET, Arndorfer RC (1973) A comparison between primary esophageal peristalsis following wet and dry swallows. J Appl Physiol 35:851-857

    CAS  Google Scholar 

  • Dodds WJ, Stef JJ, Stewart ET, Hogan WJ, Arndorfer RC, Cohen EB (1978b) Responses of feline esophagus to cervical vagal stimulation. Am J Physiol 235:E63-73

    CAS  Google Scholar 

  • Dodds WJ, Stewart ET, Logemann JA (1990) Physiology and radiology of the normal oral and pharyngeal phases of swallowing. Am J Roentgenol 154:953-963

    CAS  Google Scholar 

  • Donnelly G, Jackson TD, Ambrous K, Ye J, Safdar A, Farraway L, Huizinga JD (2001) The myogenic component in distention-induced peristalsis in the guinea pig small intestine. Am J Physiol 280:G491-500

    CAS  Google Scholar 

  • Ehrlein HJ, Schemann M, Siegle ML (1987) Motor patterns of small intestine determined by closely spaced extraluminal transducers and videofluoroscopy. Am J Physiol 253:G259-267

    CAS  Google Scholar 

  • Ferguson DB, Shuttleworth A, Whittaker DK (1999) Oral bioscience. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Frieling T, Hermann S, Kuhlbusch R, Enck P, Silny J, Lübke HJ, Strohmeyer G, Haeussinger D (1996) Comparison between intraluminal multiple electric impedance measurement and manometry in the human oesophagus. Neurogastroenterol Mot 8:45-50

    CAS  Google Scholar 

  • Frøkjær JB, Andersen SD, Drewes AM, Gregersen H (2006) Ultrasound-determined geometric and biomechanical properties of the human duodenum. Dig Dis Sci 51:1662-1669

    Google Scholar 

  • Gärtner K (2001) The forestomach of rats and mice, an effective device supporting digestive metabolism in muridae (review). J Exp Anim Sci 42:1-20

    Google Scholar 

  • Gregersen H (2003) Biomechanics of the gastrointestinal tract: New perspectives in motility research and diagnostics. Springer Verlag, New York

    Google Scholar 

  • Gregersen H, Lee TC, Chien S, Skalak R, Fung YC (1999) Strain distribution in the layered wall of the esophagus. J Biomech Eng 121:442-448

    CAS  Google Scholar 

  • Grider JR (2003) Reciprocal activity of longitudinal and circular muscle during intestinal peristaltic reflex. Am J Physiol 284:G768-775

    CAS  Google Scholar 

  • Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC (2004) Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol 556:557-569

    CAS  Google Scholar 

  • Hasegawa A, Otoguro A, Kumagai H, Nakazawa F (2005) Velocity of swallowed gel food in the pharynx by ultrasonic method. Nippon Shokuhin Kagaku Kogaku Kaishi 52:441-447

    Google Scholar 

  • Hennig GW, Costa M, Chen BN, Brookes SJH (1999) Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J Physiol 517:575-590

    CAS  Google Scholar 

  • Hiiemae K, Heath MR, Heath G, Kazazoglu E, Murray J, Sapper D, Hamblett K (1996) Natural bites, food consistency and feeding behaviour in man. Arch Oral Biol 41:175-189

    CAS  Google Scholar 

  • Hollis JB, Castell DO (1975) Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol 38:1161-1164

    CAS  Google Scholar 

  • Huizinga JD (1999) Gastrointestinal peristalsis: Joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech 47:239-247

    CAS  Google Scholar 

  • Huizinga JD, Lammers WJEP (2009) Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol 296:G1-8

    CAS  Google Scholar 

  • Hutchings JB, Lillford PJ (1988) The perception of food texture - the philosophy of the breakdown path. J Text Stud 19:103-115

    Google Scholar 

  • Jean A (2001) Brain stem control of swallowing: Neuronal network and cellular mechanisms. Physiol Rev 81:929-969

    CAS  Google Scholar 

  • Jean A, Dallaporta M (2006) Electrophysiologic characterization of the swallowing pattern generator in the brainstem. GI Motility Online, doi:101038/gimo9

    Google Scholar 

  • Jeffrey B, Udaykumar HS, Schulze KS (2003) Flow fields generated by peristaltic reflex in isolated guinea pig ileum: Impact of contraction depth and shoulders. Am J Physiol 285:G907-918

    CAS  Google Scholar 

  • Kamm MA, Van Der Sijp JR, Lennard-Jones JE (1992) Colorectal and anal motility during defaecation. Lancet 339:820

    CAS  Google Scholar 

  • Keinke O, Ehrlein HJ (1983) Effect of oleic acid on canine gastroduodenal motility, pyloric diameter and gastric emptying. Q J Exp Physiol 68:675-686

    CAS  Google Scholar 

  • Klineberg I (1980) Influences of temporomandibular articular mechanoreceptors on functional jaw movements. J Oral Rehabil 7:307-317

    CAS  Google Scholar 

  • Knutson T, Fridblom P, Ahlstro m H, Magnusson A, Tannergren C, Lennernas H (2009) Increased understanding of intestinal drug permeability determined by the LOC-I-GUT approach using multislice computed tomography. Mol Pharmaceut 6:2-10

    CAS  Google Scholar 

  • Kottegoda SR (1969) An analysis of possible nervous mechanisms involved in the peristaltic reflex. J Physiol 200:687-712

    CAS  Google Scholar 

  • Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol 289:G898-903

    CAS  Google Scholar 

  • Lammers WJEP, Lammers-van den Berg AM, Morrison JFB, Petroianu GA (2006) Translating trendelenburg; back to the future. Naunyn Schmiedebergs Arch Pharmacol 373:134-138

    CAS  Google Scholar 

  • Latham TW (1966) Fluid motions in a peristaltic pump. MS Thesis, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Lentle RG, Hemar Y, Hall CE (2006) Viscoelastic behaviour aids extrusion from and reabsorption of the liquid phase into the digesta plug: Creep rheometry of hindgut digesta in the common brushtail possum trichosurus vulpecula. J Comp Physiol B176:469-475

    Google Scholar 

  • Lentle RG, Hemar Y, Hall CE, Stafford KJ (2005) Periodic fluid extrusion and models of digesta mixing in the intestine of a herbivore, the common brushtail possum (trichosurus vulpecula). J Comp Physiol B175:337-347

    Google Scholar 

  • Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B177:543-556

    Google Scholar 

  • Lentle RG, Janssen PWM, Goh K, Chambers P, Hulls C (2010) Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig Dis Sci DOI 10.1007/s10620-010-1164-y:1-12

    Google Scholar 

  • Li D, Guo M (2007) Morphology of the levator ani muscle. Dis Colon Rectum 50:1831-1839

    Google Scholar 

  • Lillford PJ (1991) Texture and acceptability of human foods. In: Vincent JFV, Lillford PJ (eds) Feeding and the texture of foods. Cambridge University Press, Cambridge, pp 231–243

    Google Scholar 

  • Linden P, Tippett D, Johnston J, Siebens A, French J (1989) Bolus position at swallow onset in normal adults: Preliminary observations. Dysphagia 4:146-150

    CAS  Google Scholar 

  • Linden RWA (1990) Periodontal mechanoreceptors and their functions. In: Taylor A (ed) Neurophysiology of the jaws and teeth. Macmillan, New York, pp 52-95

    Google Scholar 

  • Lu X, Gregersen H (2001) Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J Biomech 34:225-233

    CAS  Google Scholar 

  • Lucas P (2004) Dental functional morphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Lund J (1991) Mastication and its control by the brain stem. Crit Rev Oral Biol Med 2:33

    CAS  Google Scholar 

  • Lund JP, Kolta A (2006) Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia 21:167-174

    Google Scholar 

  • Macagno EO, Christensen JM (1981) Fluid mechanics of gastrointestinal flow. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 335-358

    Google Scholar 

  • Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P, Fillery-Travis AJ (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol 280:G1227-1233

    CAS  Google Scholar 

  • McRorie J, Brown S, Cooper R, Givaruangsawat S, Scruggs D, Boring G (2000) Effects of dietary fibre and olestra on regional apparent viscosity and water content of digesta residue in porcine large intestine. Aliment Pharmacol Ther 14:471–477

    CAS  Google Scholar 

  • Melville J, Macagno E, Christensen J (1975) Longitudinal contractions in the duodenum: Their fluid-mechanical function. Am J Physiol 228:1887-1892

    CAS  Google Scholar 

  • Meng Y, Rao MA, Datta AK (2005) Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food Bioproducts Process 83:297-305

    Google Scholar 

  • Miller JL, Watkin KL (1996) The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing. Dysphagia 11:117-124

    CAS  Google Scholar 

  • Misra JC, Pandey SK (2001) A mathematical model for oesophageal swallowing of a food-bolus. Math Comput Model 33:997-1009

    Google Scholar 

  • Mittal RK, Liu J, Puckett JL, Bhalla V, Bhargava V, Tipnis N, Kassab G (2005) Sensory and motor function of the esophagus: Lessons from ultrasound imaging. Gastroenterology 128:487-497

    Google Scholar 

  • Mittal RK, Padda B, Bhalla V, Bhargava V, Liu J (2006) Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol 290:G431-438

    CAS  Google Scholar 

  • Mokrani A, Castelain C, Peerhossaini H (1997) Effects of chaotic advection on heat transfer. Int J Heat Mass Transf 40:3089–3104

    CAS  Google Scholar 

  • Nguyen HN, Silny J, Albers D, Roeb E, Gartung C, Rau G, Matern S (1997) Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry. Am J Physiol 273:G958-964

    CAS  Google Scholar 

  • Nicosia MA, Brasseur JG, Liu JB, Miller LS (2001) Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol 281:G1022-1033

    CAS  Google Scholar 

  • Nicosia MA, Robbins JA (2001) The fluid mechanics of bolus ejection from the oral cavity. J Biomech 34:1537-1544

    CAS  Google Scholar 

  • Okada A, Honma M, Nomura S, Yamada Y (2007) Oral behavior from food intake until terminal swallow. Physiol Behav 90:172-179

    CAS  Google Scholar 

  • Oldshue JY (1983) Fluid mixing technology. Chemical Engineering, New York

    Google Scholar 

  • Palmer JB (1998) Bolus aggregation in the oropharynx does not depend on gravity. Arch Phys Med Rehabil 79:691-696

    CAS  Google Scholar 

  • Palmer JB, Rudin NJ, Lara G, Crompton AW (1992) Coordination of mastication and swallowing. Dysphagia 7:187-200

    CAS  Google Scholar 

  • Paphangkorakit J, Osborn JW (2000) The effect of normal occlusal forces on fluid movement through human dentine in vitro. Arch Oral Biol 45:1033-1041

    CAS  Google Scholar 

  • Patel PD, Picologlou BF, Lykoudis PS (1973) Biorheological aspects of colonic activity. II. Experimental investigation of the rheological behavior of human feces. Biorheology 10:441-445

    CAS  Google Scholar 

  • Paterson WG (1999) Alteration of swallowing and oesophageal peristalsis by different initiators of deglutition. Neurogastroenterol Mot 11:63-67

    CAS  Google Scholar 

  • Prinz JF, Lucas PW (1997) An optimization model for mastication and swallowing in mammals. Proc R Soc Lond B Biol Sci 264:1715-1721

    CAS  Google Scholar 

  • Rao SS, Lu C, Schulze-Delrieu K (1996) Duodenum as a immediate brake to gastric outflow: A videofluoroscopic and manometric assessment. Gastroenterology 110:740-747

    CAS  Google Scholar 

  • Robbins J, Hamilton JW, Lof GL, Kempster GB (1992) Oropharyngeal swallowing in normal adults of different ages. Gastroenterology 103:823-829

    CAS  Google Scholar 

  • Roman C, Gonella J (1987) Extrinsic control of digestive tract motility. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 507-553

    Google Scholar 

  • Saitoh E, Shibata S, Matsuo K, Baba M, Fujii W, Palmer JB (2007) Chewing and food consistency: Effects on bolus transport and swallow initiation. Dysphagia 22:100-107

    Google Scholar 

  • Schemann M, Ehrlein HJ (1986) Postprandial patterns of canine jejunal motility and transit of luminal content. Gastroenterology 90:991-1000

    CAS  Google Scholar 

  • Schmid HR, Ehrlein HJ (1993) Effects of enteral infusion of hypertonic saline and nutrients on canine jejunal motor patterns. Dig Dis Sci 38:1062-1072

    CAS  Google Scholar 

  • Schulze-Delrieu K (1999) Visual parameters define the phase and the load of contractions in isolated guinea pig ileum. Am J Physiol 276:G1417-1424

    CAS  Google Scholar 

  • Schulze KS, Clark E (2008) Ink dispersion by sequential contractions in isolated segments of guinea pig ileum and duodenum. Neurogastroenterol Mot 20:1317-1327

    CAS  Google Scholar 

  • Seo HS, Hwang IK, Han TR, Kim IS (2007) Sensory and instrumental analysis for slipperiness and compliance of food during swallowing. J Food Sci 72:S707-S713

    CAS  Google Scholar 

  • Shafik A (1980) A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation: IX. Single loop continence: A new theory of the mechanism of anal continence. Dis Colon Rectum 23:37-46

    CAS  Google Scholar 

  • Shafik A (1991) Levator-puborectalis reflex: Its role in elimination. Pract Gastroenterol 15:28-35

    Google Scholar 

  • Shafik A (1993) Anorectal tightening reflex: Role in fecal incontinence. Eur Surg Res 25:399-405

    CAS  Google Scholar 

  • Shafik A, Shafik AA, El-Sibai O, Ali YA (2003) Videodefecography: A study of the rectal motile pattern. Surg Radiol Anat 25:139-144

    CAS  Google Scholar 

  • Shaker R, Ren J, Podvrsan B, Dodds WJ, Hogan WJ, Kern M, Hoffmann R, Hintz J (1993) Effect of aging and bolus variables on pharyngeal and upper esophageal sphincter motor function. Am J Physiol 264:G427-432

    CAS  Google Scholar 

  • Smith TK, Robertson WJ (1998) Synchronous movements of the longitudinal and circular muscle during peristalsis in the isolated guinea-pig distal colon. J Physiol 506:563-577

    CAS  Google Scholar 

  • Spencer NJ, Walsh M, Smith TK (1999) Does the guinea-pig ileum obey the ‘law of the intestine’? J Physiol 517:889-898

    CAS  Google Scholar 

  • Srinivasan R, Vela MF, Katz PO, Tutuian R, Castell JA, Castell DO (2001) Esophageal function testing using multichannel intraluminal impedance. Am J Physiol 280:G457-462

    CAS  Google Scholar 

  • Steele CM, Cichero JAY (2008) A question of rheological control. Dysphagia 23:199-201

    Google Scholar 

  • Steffe JF (1996) Rheological methods in food process engineering. Freeman Press, East Lancing

    Google Scholar 

  • Stevens RJ, Publicover NG, Smith TK (1999) Induction and organization of Ca2+ waves by enteric neural reflexes. Nature 399:62-66

    CAS  Google Scholar 

  • Stevens RJ, Publicover NG, Smith TK (2000) Propagation and neural regulation of calcium waves in longitudinal and circular muscle layers of guinea pig small intestine. Gastroenterology 118:892-904

    CAS  Google Scholar 

  • Sugarbaker DJ, Rattan S, Goyal RK (1984a) Mechanical and electrical activity of esophageal smooth muscle during peristalsis. Am J Physiol 246:G145-150

    CAS  Google Scholar 

  • Sugarbaker DJ, Rattan S, Goyal RK (1984b) Swallowing induces sequential activation of esophageal longitudinal smooth muscle. Am J Physiol 247:G515-519

    CAS  Google Scholar 

  • Takahashi T, Nitou T, Tayama N, Kawano AKI, Ogoshi H (2002) Effects of physical properties and oral perception on transit speed and passing time of semiliquid foods from the mid-pharynx to the hypopharynx. J Text Stud 33:585-598

    Google Scholar 

  • Thuneberg L, Peters S (2001) Toward a concept of stretch-coupling in smooth muscle. I. Anatomy of intestinal segmentation and sleeve contractions. Anat Rec 262:110-124

    CAS  Google Scholar 

  • Trendelenburg P (1917) Physiologische und pharmakologische versuche über die dünndarmperistaltik. Naunyn Schmiedebergs Arch Pharmacol 81:55-129

    Google Scholar 

  • Vincent JFV (1990) Fracture properties of plants. Adv Bot Res 17:235–287

    Google Scholar 

  • Vincent JFV, Jeronimidis G, Khan AA, Luyten H (1991) The wedge fracture test a new method for measurement of food texture. J Text Stud 22:45-57

    Google Scholar 

  • Waterman SA, Costa M, Tonini M (1994) Accommodation mediated by enteric inhibitory reflexes in the isolated guinea-pig small intestine. J Physiol 474:539-546

    CAS  Google Scholar 

  • Weinberg SL, Eckstein EC, Shapiro AH (1971) An experimental study of peristaltic pumping. J Fluid Mech 49:461-479

    Google Scholar 

  • Wise JL, Murray JA, Conklin JL (2004) Regional differences in oesophageal motor function. Neurogastroenterol Mot 16:31-37

    CAS  Google Scholar 

  • Wood JD (2006) Integrative functions of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, San Diego, pp 665–684

    Google Scholar 

  • Wood JD, Perkins WE (1970) Mechanical interaction between longitudinal and circular axes of the small intestine. Am J Physiol 218:762-768

    CAS  Google Scholar 

  • Yokoyama S, Ozaki T (1990) Contractions of the longitudinal and circular muscle of the small intestine. Prog Clin Biol Res 327:483-492

    CAS  Google Scholar 

  • Zbar AP, Guo M, Pescatori M (2008) Anorectal morphology and function: Analysis of the Shafik legacy. Techniques in Coloproctology 12:191-200

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. M. Janssen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lentle, R.G., Janssen, P.W. (2011). Local Motility, Flow and Mixing in Tubular Segments of the Gut. In: The Physical Processes of Digestion. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9449-3_8

Download citation

Publish with us

Policies and ethics