The Microstructure and Digestion of Particles

  • Roger G. Lentle
  • Patrick W. M. Janssen


The general properties of particulate suspensions and their effects on flow and mixing are discussed. The modes of erosion and the rate-determining processes that govern the digestion of particles with simple microstructures and those of more complex heterogeneous nature are examined. We examine how food processing modifies these particle dynamics. We briefly discuss how these and other dynamics have been incorporated into mass balance and absorption transit models.


Food Particle Heterogeneous Particle Diffusion Boundary Layer Thickness Bulk Erosion United States Pharmacopeia Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3-15CrossRefGoogle Scholar
  2. Adetayo O, Omoni R (2005) The anti-carcinogenic and anti-atherogenic effects of lycopene: A review. Trends Food Sci Technol 16:344-350Google Scholar
  3. Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50:S41-S67CrossRefGoogle Scholar
  4. Aguilera J (2005) Why food microstructure? J Food Eng 67:3-11CrossRefGoogle Scholar
  5. Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420CrossRefGoogle Scholar
  6. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382-8395Google Scholar
  7. Aprahamian M, Michel C, Humbert W, Devissaguet JP, Damge C (1987) Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol Cell 61:69-76CrossRefGoogle Scholar
  8. Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev 58:1274-1325CrossRefGoogle Scholar
  9. Boback SM, Cox CL, Ott BD, Carmody R, Wrangham RW, Secor SM (2007) Cooking and grinding reduces the cost of meat digestion. Comp Biochem Physiol A 148:651-656CrossRefGoogle Scholar
  10. Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls. Chapman & Hall, LondonGoogle Scholar
  11. Brouns F, Vermeer C (2000) Functional food ingredients for reducing the risks of osteoporosis. Trends Food Sci Technol 11:22-33CrossRefGoogle Scholar
  12. Brunner E (1904) Reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem 47:56-102Google Scholar
  13. Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221-4231CrossRefGoogle Scholar
  14. Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17:272-283CrossRefGoogle Scholar
  15. Chen L, Subirade M (2005) Chitosan/b-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041-6053Google Scholar
  16. Cussler EL (1997) Diffusion: Mass transfer in fluid systems. Cambridge University, CambridgeGoogle Scholar
  17. Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 13:1838-1845CrossRefGoogle Scholar
  18. Dressman JB, Amidon GL, Reppas C, Shah VP (1998) Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm Res 15:11-22CrossRefGoogle Scholar
  19. Edwards AJ, Nguyen CH, You CS, Swanson JE, Emenhiser C, Parker RS (2002) a- and b-carotene from a commercial carrot puree are more bioavailable to humans than from boiled-mashed carrots, as determined using an extrinsic stable isotope reference method. J Nutr 132:159-167Google Scholar
  20. Ellis PR, Kendall CWC, Ren Y, Parker C, Pacy JF, Waldron KW, Jenkins DJA (2004) Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr 80:604-613Google Scholar
  21. Fan L, Singh SK (1989) Controlled release: A quantitative treatment. Springer-Verlag, BerlinCrossRefGoogle Scholar
  22. Farrell JH (1956) The effect of mastication on the digestion of food. Br Dent J 100:149-155Google Scholar
  23. Faulks RM, Southon S (2005) Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta 1740:95-100Google Scholar
  24. Fukui H, Murakami M, Yoshikawa H, Takada K, Muranishi S (1987) Studies on the promoting effect of lipid-surfactant mixed micelles (mm) on intestinal absorption of colloidal particles. Dependence on particle size and administration site. J Pharmacobiodyn 10:236-242CrossRefGoogle Scholar
  25. Geankoplis CJ (2003) Transport processes and separation process principles:(includes unit operations). Prentice Hall, New JerseyGoogle Scholar
  26. Greve LC, Shackel KA, Ahmadi H, McArdle RN, Gohlke JR, Labavitch JM (1994) Impact of heating on carrot firmness: Contribution of cellular turgor. J Agric Food Chem 42:2896-2899CrossRefGoogle Scholar
  27. Guillon F, Auffret A, Robertson JA, Thibault JF, Barry JL (1998) Relationships between physical characteristics of sugar-beet fibre and its fermentability by human faecal flora. Carbohydr Polym 37:185-197CrossRefGoogle Scholar
  28. Guillon F, Champ M (2000) Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int 33:233-245CrossRefGoogle Scholar
  29. Heaton KW, Marcus SN, Emmett PM, Bolton CH (1988) Particle size of wheat, maize, and oat test meals: Effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am J Clin Nutr 47:675-682Google Scholar
  30. Herbst EFG (1844) Das lymphgefassystem und seine verrichtungen. Vandenhoek u Ruprecht Verlag, GottingenGoogle Scholar
  31. Hillery A, Jani P, Florence A (1994) Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 2:151-156CrossRefGoogle Scholar
  32. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed Engl 40:4331-4361CrossRefGoogle Scholar
  33. Huang W, Lee SL, Yu LX (2009) Mechanistic approaches to predicting oral drug absorption. AAPS J 11:217-224CrossRefGoogle Scholar
  34. Huang YT, Bourne MC (1983) Kinetics of thermal softening of vegetables. J Text Stud 14:1-9CrossRefGoogle Scholar
  35. Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107-142CrossRefGoogle Scholar
  36. Jani P, Halbert GW, Langridge J, Florence AT (1989) The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 41:809-812CrossRefGoogle Scholar
  37. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J Pharm Pharmacol 42:821-826CrossRefGoogle Scholar
  38. Jani PU, Florence AT, McCarthy DE (1992a) Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 84:245-252CrossRefGoogle Scholar
  39. Jani PU, McCarthy DE, Florence AT (1992b) Nanosphere and microsphere uptake via Peyer’s patches: Observation of the rate of uptake in the rat after a single oral dose. Int J Pharm 86:239-246CrossRefGoogle Scholar
  40. Juillet B, Saccomani MP, Bos C, Gaudichon C, Tomé D, Fouillet H (2006) Conceptual, methodological and computational issues concerning the compartmental modeling of a complex biological system: Postprandial inter-organ metabolism of dietary nitrogen in humans. Math Biosci 204:282-309CrossRefGoogle Scholar
  41. Khoury N, Mauger JW, Howard S (1988) Dissolution rate studies from a stationary disk/rotating fluid system. Pharm Res 5:495-500CrossRefGoogle Scholar
  42. Kong F, Singh RP (2008) A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. J Food Sci 73:202-210Google Scholar
  43. Kong F, Singh RP (2009a) Digestion of raw and roasted almonds in simulated gastric environment. Food Biophysics 4:365-377Google Scholar
  44. Kong F, Singh RP (2009b) Modes of disintegration of solid foods in simulated gastric environment. Food Biophysics 4:180-190Google Scholar
  45. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdorster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:A1513-1530CrossRefGoogle Scholar
  46. Langer R (1990) New methods of drug delivery. Science 249:1527-1533CrossRefGoogle Scholar
  47. Levenspiel O (1999) Chemical reaction engineering. Wiley, New YorkGoogle Scholar
  48. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv Drug Deliv Rev 58:1379-1408CrossRefGoogle Scholar
  49. Lucas P (2004) Dental functional morphology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Macheras P, Argyrakis P (1997) Gastrointestinal drug absorption: Is it time to consider heterogeneity as well as homogeneity? Pharm Res 14:842-847CrossRefGoogle Scholar
  51. Mandalari G, Faulks RM, Rich GT, Lo Turco V, Picout DR, Lo Curto RB, Bisignano G, Dugo P, Dugo G, Waldron KW (2008) Release of protein, lipid, and vitamin E from almond seeds during digestion. J Agric Food Chem 56:3409-3416CrossRefGoogle Scholar
  52. Marciani L, Faulks R, Wickham M, Bush D, Pick B, Wright J, Cox E, Fillery-Travis A, Gowland P, Spiller R (2008) Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. Br J Nutr 101:919-928Google Scholar
  53. Marciani L, Gowland PA, Fillery-Travis A, Manoj P, Wright J, Smith A, Young P, Moore R, Spiller RC (2001) Assessment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol 280:G844-849Google Scholar
  54. McClements DJ, Decker EA, Park Y, Weiss J (2008) Designing food structure to control stability, digestion, release and absorption of lipophilic food components. Food Biophysics 3:219-228Google Scholar
  55. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Z 49:333-369Google Scholar
  56. Moretti D, Zimmermann M, Wegmuller R, Walczyk T, Zeder C, Hurrell R (2006) Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. Am J Clin Nutr 83:632Google Scholar
  57. Müller RH, Böhm BHL, Grau MJ (1999) Nanosuspensionen: Formulierungen für schwerlösliche arzneistoffe mit geringer bioverfügbarkeit. 2. Mitteilung: Stabilität, biopharmazeutische aspekte, mögliche arzneiformen und zulassungsfragen. Pharmazeutische Industrie 61:175-178Google Scholar
  58. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622-627CrossRefGoogle Scholar
  59. Nernst W (1904) Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem 47:52-55Google Scholar
  60. Nielsen EK, Ingvartsen KL (2000) Effect of cereal type, disintegration method and pelleting on stomach content, weight and ulcers and performance in growing pigs. Livestock Prod Sci 66:271-282CrossRefGoogle Scholar
  61. Norris DA, Sinko PJ (1997a) Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 63:1481-1492CrossRefGoogle Scholar
  62. Norris DA, Sinko PJ (1997b) The role of surface hydrophobicity in the transport of polystyrene microspheres through caco-2 cell monolayers and intestinal mucin. Proceedings of the Controlled Release Society:17–18Google Scholar
  63. Nusrat A, Turner JR, Madara JL (2000) Molecular physiology and pathophysiology of tight junctions: IV. Regulation of tight junctions by extracellular stimuli: Nutrients, cytokines, and immune cells. Am J Physiol 279:G851-857Google Scholar
  64. Oh DM, Curl RL, Amidon GL (1993) Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: A mathematical model. Pharm Res 10:264-270CrossRefGoogle Scholar
  65. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72:R21-R32CrossRefGoogle Scholar
  66. Parrott N, Lave T (2008) Applications of physiologically based absorption models in drug discovery and development. Mol Pharmaceut 5:760-775CrossRefGoogle Scholar
  67. Parrott N, Lukacova V, Fraczkiewicz G, Bolger MB (2009) Predicting pharmacokinetics of drugs using physiologically based modeling - application to food effects. AAPS J 11:45-53CrossRefGoogle Scholar
  68. Pothakamury UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397-406CrossRefGoogle Scholar
  69. Read NW, Welch IML, Austen CJ, Barnish C, Bartlett CE, Baxter AJ, Brown G, Comption ME, Hume KE, Storie I (2007) Swallowing food without chewing; a simple way to reduce postprandial glycaemia. Br J Nutr 55:43-47Google Scholar
  70. Rock CL, Lovalvo JL, Emenhiser C, Ruffin MT, Flatt SW, Schwartz SJ (1998) Bioavailability of b-carotene is lower in raw than in processed carrots and spinach in women. J Nutr 128:913-916Google Scholar
  71. Santus G, Baker R (1995) Osmotic drug delivery: A review of the patent literature. J Controlled Release 35:1-21CrossRefGoogle Scholar
  72. Scholz A, Kostewicz E, Abrahamsson B, Dressman JB (2003) Can the USP paddle method be used to represent in-vivo hydrodynamics? J Pharm Pharmacol 55:443-451CrossRefGoogle Scholar
  73. Singh B, Kim K (2000) Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J Controlled Release 63:235-259CrossRefGoogle Scholar
  74. Sinha V, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19-38CrossRefGoogle Scholar
  75. Tornberg E (2005) Effects of heat on meat proteins - implications on structure and quality of meat products. Meat Science 70:493-508CrossRefGoogle Scholar
  76. Uhrich K, Cannizzaro S, Langer R, Shakesheff K (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181-3198CrossRefGoogle Scholar
  77. Van Buggenhout S, Sila DN, Duvetter T, Van Loey A, Hendrickx M (2009) Pectins in processed fruits and vegetables: Part III - texture engineering. Compr Rev Food Sci Food Saf 8:105-117CrossRefGoogle Scholar
  78. van het Hof KH, de Boer BCJ, Tijburg L, Lucius BRHM, Zijp I, West CE, Hautvast JGAJ, Weststrate JA (2000a) Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J Nutr 130:1189-1196Google Scholar
  79. van het Hof KH, Tijburg LBM, Pietrzik K, Weststrate JA (2007) Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. Br J Nutr 82:203-212Google Scholar
  80. van het Hof KH, West CE, Weststrate JA, Hautvast JGAJ (2000b) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503-506Google Scholar
  81. Vincent JFV (1990) Fracture properties of plants. Adv Bot Res 17:235–287Google Scholar
  82. Volkheimer G, Schulz FH, Lehmann H, Aurich I, Hübner RH, Hübner M, Hallmayer A, Münch H, Oppermann H, Strauch S (1968) Primary portal transport of persorbed starch granules from the intestinal wall. Pharmacology 18:103-108CrossRefGoogle Scholar
  83. Wondra KJ, Hancock JD, Behnke KC, Hines RH, Stark CR (1995) Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. J Anim Sci 73:757-763Google Scholar
  84. Yu LX, Amidon GL (1999) A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 186:119-125CrossRefGoogle Scholar
  85. Yu LX, Lipka E, Crison JR, Amidon GL (1996) Transport approaches to the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal absorption. Adv Drug Deliv Rev 19:359-376CrossRefGoogle Scholar
  86. Zhou JR, Gugger ET, Erdman JW (1996) The crystalline form of carotenes and the food matrix in carrot root decrease the relative bioavailability of beta- and alpha-carotene in the ferret model. J Am Coll Nutr 15:84-91Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Food Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations