Flow, Mixing and Absorption at the Mucosa

  • Roger G. Lentle
  • Patrick W. M. Janssen


The functions of the various components of the gut wall are systematically reviewed i.e. the mucinous layers, the submucinous compartment and the morphological features and cellular components of the gut epithelium. Work describing the ‘unstirred water layer’ (UWL) is reviewed and related to work on paracellular and transcellular absorption. The molecular structure and physical properties of the mucinous layers are described and related to the functions of lubrication, protection and the permeation of nutrients and secretions within various segments of the gut. Interactions with commensal enteral microflora are also described.


Tight Junction Apical Membrane Mucus Layer Osmotic Gradient Transcellular Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD (2000) Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol 279:G437-447Google Scholar
  2. Allen A (1978) Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br Med Bull 34:28-33Google Scholar
  3. Allen A, Flemström G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol 288:G1-19Google Scholar
  4. Amerongen HM, Weltzin R, Farnet CM, Michetti P, Haseltine WA, Neutra MR (1991) Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr 4:760-765Google Scholar
  5. Amidon GL, Kou J, Elliott RL, Lightfoot EN (1980) Analysis of models for determining intestinal wall permeabilities. J Pharm Sci 69:1369-1373Google Scholar
  6. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382-8395Google Scholar
  7. Amsden B (1999) An obstruction-scaling model for diffusion in homogeneous hydrogels. Macromolecules 32:874-879Google Scholar
  8. Amsden B, Turner N (1999) Diffusion characteristics of calcium alginate gels. Biotechnol Bioeng 65:605-610Google Scholar
  9. Andrews G, Laverty T, Jones D (2009) Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 71:505-518Google Scholar
  10. Assentoft JE, Gregersen H, O’Brien WD (2000) Determination of Biomechanical Properties in Guinea Pig Esophagus by Means of High Frequency Ultrasound and Impedance Planimetry. Dig Dis Sci 45:1260-1266Google Scholar
  11. Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol 280:G922-929Google Scholar
  12. Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP (1993) Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 41:1479-1485Google Scholar
  13. Axelsson MAB, Asker N, Hansson GC (1998) O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J Biol Chem 273:18864-18870Google Scholar
  14. Ballard S, Hunter J, Taylor A (1995) Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 15:35-55Google Scholar
  15. Barker N, Van De Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856-1864Google Scholar
  16. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621-1625Google Scholar
  17. Barry Jr R (1976) Mucosal surface areas and villous morphology of the small intestine of small mammals: functional interpretations. J Mammal 57:273-290Google Scholar
  18. Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371-382Google Scholar
  19. Bell L, Williams L (1982) A scanning and transmission electron microscopical study of the morphogenesis of human colonic villi. Anat Embryol (Berl) 165:437-455Google Scholar
  20. Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W (2003) Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther 307:737-744Google Scholar
  21. Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE, LaMont JT (1992) Viscous fingering of HCl through gastric mucin. Nature 360:458-461Google Scholar
  22. Bijlsma PB, Peeters RA, Groot JA, Dekker PR, Taminiau J, A,J.M, van der Meer R (1995) Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: a hypothesis. Gastroenterology 108:687-696Google Scholar
  23. Bjarnason I, Macpherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566-1581Google Scholar
  24. Bond JH, Levitt DG, Levitt MD (1977) Quantitation of countercurrent exchange during passive absorption from the dog small intestine: evidence for marked species differences in the efficiency of exchange. J Clin Invest 59:308-318Google Scholar
  25. Bongaerts G, Severijnen R, Timmerman H (2005) Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy. Med Hypotheses 64:64-68Google Scholar
  26. Bongaerts JHH, Rossetti D, Stokes JR (2007) The lubricating properties of human whole saliva. Trib Lett 27:277-287Google Scholar
  27. Boshi Y, Nezu R, Khan J (1996) Developmental changes in distribution of the mucous gel layer and intestinal permeability in rat small intestine. J Parenter Enteral Nutr 20:406-411Google Scholar
  28. Brown AL (1962) Microvilli of the human jejunal epithelial cell. J Cell Biol 12:623-627Google Scholar
  29. Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380-1383Google Scholar
  30. Bustamante SA, Jodal M, Nilsson NJ, Lundgren O, Köhlin T (1989) Evidence for a countercurrent exchanger in the intestinal villi of suckling swine. Acta Physiol Scand 137:207-213Google Scholar
  31. Cammarota G, Martino A, Pirozzi GA, Cianci R, Cremonini F, Zuccalà G, Cuoco L, Ojetti V, Montalto M, Vecchio FM (2004) Direct visualization of intestinal villi by high-resolution magnifying upper endoscopy: a validation study. Gastrointest Endosc 60:732-738Google Scholar
  32. Cao X, Bansil R, Bhaskar K, Turner B, LaMont J, Niu N, Afdhal N (1999) pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J 76:1250-1258Google Scholar
  33. Carlstedt I, Sheehan JK (1984) Macromolecular properties and polymeric structure of mucus glycoproteins. Mucus and Mucosa, Ciba Found Symp. Pitman, pp 157-172Google Scholar
  34. Carrión F, Martínez-Nicolás G, Iglesias P, Sanes J, Bermúdez MD (2009) Liquid Crystals in Tribology. Int J Mol Sci 10:4102-4115Google Scholar
  35. Celli J, Gregor B, Turner B, Afdhal NH, Bansil R, Erramilli S (2005) Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 6:1329-1333Google Scholar
  36. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S (2007) Rheology of Gastric Mucin Exhibits a pH-Dependent Sol-Gel Transition. Biomacromolecules 8:1580-1586Google Scholar
  37. Chambraud L, Bernadac A, Gorvel JP, Maroux S (1989) Renewal of goblet cell mucus granules during the cell migration along the crypt-villus axis in rabbit jejunum: an immunolabeling study. Biol Cell 65:159-162Google Scholar
  38. Chang EB, Rao MC (1994) Intestinal water and electrolyte transport: mechanisms of physiological and adaptive responses. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Raven, New York, pp 2027-2081Google Scholar
  39. Chang SK, Dohrman AF, Basbaum CB, Ho SB, Tsuda T, Toribara NW, Gum JR, Kim YS (1994) Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology 107:28-36Google Scholar
  40. Cone RA (1999) Mucus. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (eds) Mucosal immunology. Academic Press, San Diego, pp 43-64Google Scholar
  41. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75-85Google Scholar
  42. Copeman M, Matuz J, Leonard AJ, Pearson JP, Dettmar PW, Allen A (1994) The gastroduodenal mucus barrier and its role in protection against luminal pepsins: the effect of 16,16 dimethyl prostaglandin E2, carbopol-polyacrylate, sucralfate and bismuth subsalicylate. J Gastroenterol Hepatol 9:55-59Google Scholar
  43. Corfield AP, Wiggins R, Edwards C, Myerscough N, Warren BF, Soothill P, Millar MR, Homer P (2002) A sweet coating - how bacteria deal with sugars. In: Axford JS (ed) Glycobiology and Medicine, pp 3-15Google Scholar
  44. Corthesy B (2003) Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr Pharm Biotechnol 4:51-67Google Scholar
  45. Creamer B (1964) Variations in small-intestinal villous shape and mucosal dynamics. Br Med J 2:1371-1373Google Scholar
  46. Cu Y, Saltzman W (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 61:101-114Google Scholar
  47. Davies JM, Viney C (1998) Water–mucin phases: conditions for mucus liquid crystallinity. Thermochimica Acta 315:39-49Google Scholar
  48. Dawson M, Wirtz D, Hanes J (2003) Enhanced Viscoelasticity of Human Cystic Fibrotic Sputum Correlates with Increasing Microheterogeneity in Particle Transport. J Biol Chem 278:50393-50401Google Scholar
  49. De Bolós C, Garrido M, Real FX (1995) MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 109:723-734Google Scholar
  50. De Santa Barbara P, Van Den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60:1322-1332Google Scholar
  51. Debnam ES, Levin RJ (1975) Effects of fasting and semistarvation on the kinetics of active and passive sugar absorption across the small intestine in vivo. J Physiol 252:681-700Google Scholar
  52. Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S-1141SGoogle Scholar
  53. Desai MA, Mutlu M, Vadgama P (1992) A study of macromolecular diffusion through native porcine mucus. Cell Mol Life Sci 48:22-26Google Scholar
  54. DeSimone JA (1983) Diffusion barrier in the small intestine. Science 220:221-222Google Scholar
  55. Diamond JM (1978) Channels in epithelial cell membranes and junctions. Fed Proc 37:2639-2643Google Scholar
  56. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881-890Google Scholar
  57. Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H (2002) Morphometric and biomechanical intestinal remodeling induced by fasting in rats. Dig Dis Sci 47:1158-1168Google Scholar
  58. Dresselhuis DM, De Hoog EHA, Cohen Stuart MA, Van Aken GA (2008) Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocolloids 22:323-335Google Scholar
  59. Dyer J, Salmon K, Zibrik L, Shirazi-Beechey S (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302-305Google Scholar
  60. Enss ML, Müller H, Schmidt-Wittig U, Kownatzki R, Coenen M, Hedrich HJ (1996) Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand J Gastroenterol 31:868-874Google Scholar
  61. Fagerholm U, Lennernäs H (1995) Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption. Eur J Pharm Sci 3:247-253Google Scholar
  62. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745-29753Google Scholar
  63. Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Physiol Rev 60:510-550Google Scholar
  64. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1995) Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108:983-989Google Scholar
  65. Firth JA (2002) Endothelial barriers: From hypothetical pores to membrane proteins. J Anat 200:524-525Google Scholar
  66. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101-1111Google Scholar
  67. Florey HW (1962) The secretion and function of intestinal mucus. Gastroenterology 43:326-329Google Scholar
  68. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, Neutra MR (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045-1059Google Scholar
  69. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539-1550Google Scholar
  70. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777-1788Google Scholar
  71. Goldberg R, Austen WG, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551-3556Google Scholar
  72. Gonnella PA, Neutra MR (1984) Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol 99:909-917Google Scholar
  73. Graf G, Matveev S, Smart E (1999) Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med 9:221-224Google Scholar
  74. Greenberg EP, Canale-Parola E (1977) Motility of flagellated bacteria in viscous environments. J Bacteriol 132:356-358Google Scholar
  75. Gregersen H (2003) Biomechanics of the gastrointestinal tract: new perspectives in motility research and diagnostics. Springer Verlag, New YorkGoogle Scholar
  76. Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Mot 8:277-297Google Scholar
  77. Gregersen H, Kassab G, Pallencaoe E, Lee C, Chien S, Skalak R, Fung Y (1997) Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. American Journal of Physiology- Gastrointestinal and Liver Physiology 273:865Google Scholar
  78. Gruber P, Longer MA, Robinson JR (1987) Some biological issues in oral, controlled drug delivery. Adv Drug Deliv Rev 1:1-18Google Scholar
  79. Gruzdkov AA, Gusev V, Ugolev AM (1989) Mathematical modeling. In: Ugolev AM (ed) Membrane digestion: new facts and concepts. Mir, Moscow, pp 228–234Google Scholar
  80. Güldner FH, Wolff JR, Keyserlingk DG (1972) Fibroblasts as a part of the contractile system in duodenal villi of rat. Cell Tissue Res 135:349-360Google Scholar
  81. Gum JR, Hicks J, Toribara NW, Siddiki B, Kim Y (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem 269:2440-2446Google Scholar
  82. Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 253:C749-758Google Scholar
  83. Haljamäe H, Jodal M, Lundgren O (1973) Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol Scand 89:580-593Google Scholar
  84. Hallbäck DA, Hulten L, Jodal M, Lindhagen J, Lundgren O (1978) Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology 74:683-690Google Scholar
  85. Hallbäck DA, Jodal M, Mannischeff M, Lundgren O (1991) Tissue osmolality in intestinal villi of four mammals in vivo and in vitro. Acta Physiol Scand 143:271-277Google Scholar
  86. Hansen GH, Niels-Christiansen LL, Immerdal L, Danielsen EM (2003) Scavenger receptor class B type I (SR-BI) in pig enterocytes: trafficking from the brush border to lipid droplets during fat absorption. Gut 52:1424-1431Google Scholar
  87. Hansen GH, Niels-Christiansen LL, Immerdal L, Nystrom BT, Danielsen EM (2007) Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption. Am J Physiol 293:G1325-1332Google Scholar
  88. Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol 297:G708-715Google Scholar
  89. Harada N, Iijima S, Kobayashi K, Yoshida T, Brown WR, Hibi T, Oshima A, Morikawa M (1997) Human IgGFc binding protein (FcgBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 272:15232-15241Google Scholar
  90. Harris MS, Kennedy JG (1988) Relationship between distention and absorption in rat intestine. II. Effects of volume and flow rate on transport. Gastroenterology 94:1172-1179Google Scholar
  91. Hasan M, Ferguson A (1981) Measurements of intestinal villi non-specific and ulcer-associated duodenitis-correlation between area of microdissected villus and villus epithelial cell count. J Clin Pathol 34:1181-1186Google Scholar
  92. Haward SJ, Odell JA, Berry M, Hall T (2010) Extensional rheology of human saliva. Rheol Acta DOI 10.1007/s00397-010-0494-1Google Scholar
  93. Herrmann A, Davies JR, Lindell G, Mårtensson S, Packer NH, Swallow DM, Carlstedt I (1999) Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem 274:15828-15828Google Scholar
  94. Hill AE (2008) Fluid transport: a guide for the perplexed. J Membr Biol 223:1-11Google Scholar
  95. Ho SB, Anway RE, Ahmed Z (2000) Spatial organization of MUC5AC and MUC5 mucins within the surface mucous layer of the stomach. Gastroenterology 118:1396Google Scholar
  96. Hollander D (1992) The intestinal permeability barrier: a hypothesis as to its regulation and involvement in Crohn’s disease. Scand J Gastroenterol 27:721-726Google Scholar
  97. Holm L, Flemström G (1990) Microscopy of acid transport at the gastric surface in vivo. J Intern Med 732:91-95Google Scholar
  98. Holzheimer G, Winne D (1989) Influence of distension on absorption and villous structure in rat jejunum. Am J Physiol 256:G188-197Google Scholar
  99. Hong Z, Chasan B, Bansil R, Turner B, Bhaskar K, Afdhal N (2005) Atomic force microscopy reveals aggregation of gastric mucin at low pH. Biomacromolecules 6:3458-3466Google Scholar
  100. Hooper LV, Gordon JI (2001) Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R-10RGoogle Scholar
  101. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833-9838Google Scholar
  102. Horiuchi K, Naito I, Nakano K, Nakatani S, Nishida K, Taguchi T, Ohtsuka A (2005) Three-dimensional ultrastructure of the brush border glycocalyx in the mouse small intestine: a high resolution scanning electron microscopic study. Arch Histol Cytol 68:51-56Google Scholar
  103. Hoskins LC, Boulding ET (1981) Mucin degradation in human colon ecosystems: evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 67:163-172Google Scholar
  104. Hosoyamada Y, Sakai T (2007) Mechanical components of rat intestinal villi as revealed by ultrastructural analysis with special reference to the axial smooth muscle cells in the villi. Arch Histol Cytol 70:107-116Google Scholar
  105. Hume ID (1999) Marsupial Nutrition. Cambridge University Press, CambridgeGoogle Scholar
  106. Ihida K, Suganuma T, Tsutama S, Murata F (1988) Glycoconjugate histochemistry of the rat fundic gland using Griffonia simplicifolia agglutinin-II during the development. Am J Anat 182:250-256Google Scholar
  107. Ikonomov O, Simon M, Frömter E (1985) Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pflügers Arch 403:301-307Google Scholar
  108. Isberg R, Van Nhieu G (1994) Two mammalian cell internalization strategies used by pathogenic bacteria. Annu Rev Genet 28:395-422Google Scholar
  109. Ishihara K, Kurihara M, Eto H, Kasai K, Shimauchi S, Hotta K (1993) A monoclonal antibody against carbohydrate moiety of rat gastric surface epithelial cell-derived mucin. Hybridoma 12:609-620Google Scholar
  110. Ito S (1965) The enteric surface coat on cat intestinal microvilli. J Cell Biol 27:475-491Google Scholar
  111. Ito S (1974) Form and function of the glycocalyx on free cell surfaces. Philos Trans R Soc Lond B Biol Sci 268:55-66Google Scholar
  112. Johansson M, Synnerstad I, Holm L (2000) Acid transport through channels in the mucous layer of rat stomach. Gastroenterology 119:1297-1304Google Scholar
  113. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064-15069Google Scholar
  114. Johansson MEV, Thomsson KA, Hansson GC (2009) Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the FcgBP protein. J Proteome Res 8:3549-3557Google Scholar
  115. Johnson DA, Amidon GL (1988) Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J Theor Biol 131:93-106Google Scholar
  116. Junqueira LC, Carneiro J (2005) Basic Histology: Text & Atlas. McGraw-Hill, New YorkGoogle Scholar
  117. Karlsson J, Artursson P (1991) A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm 71:55-64Google Scholar
  118. Karlsson NG, Herrmann A, Karlsson H, Johansson ME, Carlstedt I, Hansson GC (1997) The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. J Biol Chem 272:27025-27034Google Scholar
  119. Karlsson NG, Johansson ME, Asker N, Karlsson H, Gendler SJ, Carlstedt I, Hansson GC (1996) Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J 13:823-831Google Scholar
  120. Kas HS (1997) Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 14:689-711Google Scholar
  121. Kellett GL (2001) The facilitated component of intestinal glucose absorption. J Physiol 531:585-595Google Scholar
  122. Kerss S, Allen A, Garner A (1982) A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin Sci 63:187-195Google Scholar
  123. Khanvilkar K, Donovan MD, Flanagan DR (2001) Drug transfer through mucus. Adv Drug Deliv Rev 48:173-193Google Scholar
  124. Kinter IS, Wilson TH (1975) Autoradiographic study of sugar and amino acid transport by everted sacs of hamster intestine. J Cell Biol 25:19-39Google Scholar
  125. Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 167:185-189Google Scholar
  126. Kleessen B, Blaut M (2007) Modulation of gut mucosal biofilms. Br J Nutr 93:35-40Google Scholar
  127. Knutson T, Fridblom P, Ahlstrom H, Magnusson A, Tannergren C, Lennernas H (2009) Increased Understanding of Intestinal Drug Permeability Determined by the LOC-I-GUT Approach Using Multislice Computed Tomography. Mol Pharmaceut 6:2–10Google Scholar
  128. Knutton S, Limbrick AR, Robertson JD (1974) Regular structures in membranes: I. Membranes in the Endocytic Complex of Ileal Epithelial Cells. J Cell Biol 62:679-694Google Scholar
  129. Komuro T (1985) Fenestrations of the basal lamina of intestinal villi of the rat. Cell Tissue Res 239:183-188Google Scholar
  130. Komuro T, Hashimoto Y (1990) Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol 53:1-21Google Scholar
  131. Lai S, Wang Y, Wirtz D, Hanes J (2009) Micro-and macrorheology of mucus. Adv Drug Deliv Rev 61:86-100Google Scholar
  132. Lee J (1969) A micropuncture study of water transport by dog jejunal villi in vitro. Am J Physiol 217:1528-1533Google Scholar
  133. Lee S, Muller M, Rezwan K, Spencer ND (2005) Porcine gastric mucin (PGM) at the water/poly (dimethylsiloxane)(PDMS) interface: influence of pH and ionic strength on its conformation, adsorption, and aqueous lubrication properties. Langmuir 21:8344-8353Google Scholar
  134. Lentle RG, Janssen PWM (2008) Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B178:673-690Google Scholar
  135. Leung DW, Loo DDF, Hirayama BA, Zeuthen T, Wright EM (2000) Urea transport by cotransporters. J Physiol 528:251-257Google Scholar
  136. Levine MJ (1993) Salivary macromolecules. A structure/function synopsis. Ann N Y Acad Sci 694:11-16Google Scholar
  137. Levitt MD, Fetzer CA, Kneip JM, Bond JH, Levitt DG (1987) Quantitative assessment of luminal stirring in the perfused small intestine of the rat. Am J Physiol 252:G325-332Google Scholar
  138. Levitt MD, Furne JK, Strocchi A, Anderson BW, Levitt DG (1990) Physiological measurements of luminal stirring in the dog and human small bowel. J Clin Invest 86:1540-1547Google Scholar
  139. Levitt MD, Kneip JM, Levitt DG (1988) Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat. J Clin Invest 81:1365-1369Google Scholar
  140. Lewandowski Z (2000) Structure and Function of Biofilms. In: Evans LV (ed) Biofilms: Recent advances in their study and control. Harwood Academic, Amsterdam, pp 1-17Google Scholar
  141. Leyton L (1975) Fluid behaviour in biological systems. Oxford University PressGoogle Scholar
  142. Lin JH, Chiba M, Baillie TA (1999) Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 51:135-157Google Scholar
  143. Loeschke K, Bentzel CJ (1994) Osmotic water flow pathways across Necturus gallbladder: role of the tight junction. Am J Physiol 266:G722-730Google Scholar
  144. Lu X, Gregersen H (2001) Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J Biomech 34:225-233Google Scholar
  145. Ma TY, Anderson JM (2006) Tight junctions and the intestinal barrier. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Academic Press, San Diego, pp 1559-1594Google Scholar
  146. Ma TY, Hoa NT, Tran DD, Bui V, Pedram A, Mills S, Merryfield M (2000) Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. Am J Physiol 279:G875-885Google Scholar
  147. Ma TY, Hollander D, Erickson RA, Truong H, Krugliak P (1991) Is the small intestinal epithelium truly ‘tight’ to inulin permeation? Am J Physiol 260:G669-676Google Scholar
  148. MacAulay N, Gether U, Klærke DA, Zeuthen T (2002) Passive water and urea permeability of a human Na+–glutamate cotransporter expressed in Xenopus oocytes. J Physiol 542:817-828Google Scholar
  149. Macfarlane S, Cummings JH, Macfarlane GT (1999) Bacterial colonisation of surfaces in the large intestine. In: Gibson GR, Roberfroid MB (eds) Colonic Microbiota, Nutrition and Health. Kluwer Academic, Dordrecht, pp 71–88Google Scholar
  150. Macfarlane S, Macfarlane GT (2004) Bacterial diversity in the human gut. Adv Appl Microbiol 54:261-289Google Scholar
  151. Macfarlane S, Macfarlane GT (2006) Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl Environ Microbiol 72:6204-6211Google Scholar
  152. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941-950Google Scholar
  153. Madara JL (1983) Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J Cell Biol 97:125-136Google Scholar
  154. Madara JL, Carlson S (1991) Supraphysiologic L-tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J Clin Invest 87:454-462Google Scholar
  155. Mailman D, Womack WA, Kvietys PR, Granger DN (1990) Villous motility and unstirred water layers in canine intestine. Am J Physiol 258:G238-246Google Scholar
  156. Marcial MA, Carlson SL, Madara JL (1984) Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J Membr Biol 80:59-70Google Scholar
  157. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91-98Google Scholar
  158. Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama T (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40:782-789Google Scholar
  159. Matthes I, Nimmerfall F, Vonderscher J, Sucker H (1992) Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie 47:787-791Google Scholar
  160. Maury J, Nicoletti C, Guzzo-Chambraud L, Maroux S (1995) The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur J Biochem 228:323-331Google Scholar
  161. McConnell RE, Higginbotham JN, Shifrin Jr DA, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185:1285-1298Google Scholar
  162. McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177:671-681Google Scholar
  163. Menzies IS (1984) Transmucosal passage of inert molecules in health and disease. In: Skadhauge E, Heintze K (eds) Intestinal absorption and secretion (Falk Symposium 36). MTP Press, Titisee, West Germany, pp 527–543Google Scholar
  164. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703-761Google Scholar
  165. Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis In’t Veld JHJ (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108-114Google Scholar
  166. Mooseker M (1985) Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol 1:209-241Google Scholar
  167. Mooseker MS, Coleman TR (1989) The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J Cell Biol 108:2395-2400Google Scholar
  168. Mooseker MS, Tilney LG (1975) Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67:725-743Google Scholar
  169. Mullen TL, Muller M, Van Bruggen JT (1985) Role of solute drag in intestinal transport. J Gen Physiol 85:347-363Google Scholar
  170. Neutra M, Pringault E, Kraehenbuhl J (1996) Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 14:275-300Google Scholar
  171. Neutra MR, Giannasca PJ, Giannasca KT, Kraehenbuhl JP (1995) M cells and microbial pathogens. In: Blaser MJ, Ravdin JI, Greenberg HB, Guerrant RL (eds) Infections of the GI tract. Raven, New York, pp 163–178Google Scholar
  172. Neutra MR, Phillips TL, Mayer EL, Fishkind DJ (1987) Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 247:537-546Google Scholar
  173. Nicholas CV, Desai M, Vadgama P, McDonnell MB, Lucas S (1991) pH dependence of hydrochloric acid diffusion through gastric mucus: correlation with diffusion through a water layer using a membrane-mounted glass pH electrode. Analyst 116:463-467Google Scholar
  174. Niibuchi JJ, Aramaki Y, Tsuchiya S (1986) Binding of antibiotics to rat intestinal mucin. Int J Pharm 30:181-187Google Scholar
  175. Nittmann J, Daccord G, Stanley HE (1985) Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314:141-144Google Scholar
  176. Nordman H, Davies JR, Lindell G, de Bolós C, Real F, Carlstedt I (2002) Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem J 364:191-200Google Scholar
  177. Odagi I, Kato T, Imazu H, Kaise M, Omar S, Tajiri H (2007) Examination of normal intestine using confocal endomicroscopy. J Gastroenterol Hepatol 22:658-662Google Scholar
  178. Offner GD, Troxler RF (2000) Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res 14:69-75Google Scholar
  179. Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81:1930-1937Google Scholar
  180. Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172:61-64Google Scholar
  181. Palmai-Pallag T, Khodabukus N, Kinarsky L, Leir S, Sherman S, Hollingsworth M, Harris A (2005) The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. Febs J 272:2901-2911Google Scholar
  182. Pappenheimer JR (1988) Physiological regulation of epithelial junctions in intestinal epithelia. Acta Physiol Scand Suppl 571:43Google Scholar
  183. Pappenheimer JR (1990) Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am J Physiol 259:G290-299Google Scholar
  184. Pappenheimer JR (1998) Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Comp Biochem Physiol A 121:45-58Google Scholar
  185. Pappenheimer JR (2001a) Intestinal absorption of hexoses and amino acids: from apical cytosol to villus capillaries. J Membr Biol 184:233-239Google Scholar
  186. Pappenheimer JR (2001b) Role of pre-epithelial ‘unstirred’ layers in absorption of nutrients from the human jejunum. J Membr Biol 179:185-204Google Scholar
  187. Pappenheimer JR, Dahl CE, Karnovsky ML, Maggio JE (1994) Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci USA 91:1942-1945Google Scholar
  188. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100:123-136Google Scholar
  189. Pedley KC, Naftalin RJ (1993) Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol 460:525-547Google Scholar
  190. Peppas NA, Hansen PJ, Buri PA (1984) A theory of molecular diffusion in the intestinal mucus. Int J Pharm 20:107-118Google Scholar
  191. Phillips A, France N, Walker-Smith J (1979) The structure of the enterocyte in relation to its position on the villus in childhood: an electron microscopical study. Histopathology 3:117-130Google Scholar
  192. Pohl P, Saparov SM, Antonenko YN (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75:1403-1409Google Scholar
  193. Poulsen LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA (1994) Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62:5191-5194Google Scholar
  194. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275-288Google Scholar
  195. Powell DW (1986) Ion and water transport in the intestine. In: Andreoli TE, Hoffman JF, Faunstial DO, Schultz SG (eds) Physiology of membrane disorders. Plenum, New York, pp 559-596Google Scholar
  196. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflügers Arch 440:653-666Google Scholar
  197. Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 273:H2272-2279Google Scholar
  198. Ranc H, Elkhyat A, Servais C, Mac-Mary S, Launay B, Humbert P (2006) Friction coefficient and wettability of oral mucosal tissue: Changes induced by a salivary layer. Colloid Surf A Physicochem Eng Aspects 276:155-161Google Scholar
  199. Raviv U, Klein J (2002) Fluidity of bound hydrate layers. Science 297:1540–1543Google Scholar
  200. Read NW, Levin RJ, Holdsworth CD (1976) Proceedings: Measurement of the functional unstirred layer thickness in the human jejunum in vivo. Gut 17:387Google Scholar
  201. Rees WD, Turnberg LA (1982) Mechanisms of gastric mucosal protection: a role for the ‘mucus-bicarbonate’ barrier. Clin Sci 62:343-348Google Scholar
  202. Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59:3255-3265Google Scholar
  203. Robbe C, Capon C, Maes E, Rousset M, Zweibaum A, Zanetta JP, Michalski JC (2003) Evidence of regio-specific glycosylation in human intestinal mucins. J Biol Chem 278:46337-46348Google Scholar
  204. Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose degrading bacteria in methane excreting subjects. FEMS Microbiol Ecol 46:81-89Google Scholar
  205. Rodrigueza W, Thuahnai S, Temel R, Lund-Katz S, Phillips M, Williams D (1999) Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J Biol Chem 274:20344Google Scholar
  206. Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330-2336Google Scholar
  207. Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86:245-278Google Scholar
  208. Ross GA, Mayhew TM (1985) Effects of fasting on mucosal dimensions in the duodenum, jejunum and ileum of the rat. J Anat 142:191-200Google Scholar
  209. Ryu K, Grim E (1982) Unstirred water layer in canine jejunum. Am J Physiol 242:G364-369Google Scholar
  210. Salas PJI, Moreno JH (1982) Single-file diffusion multi-ion mechanism of permeation in paracellular epithelial channels. J Membr Biol 64:103-112Google Scholar
  211. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA (1994) Antibody diffusion in human cervical mucus. Biophys J 66:508-515Google Scholar
  212. Sandzen B, Blom H, Dahlgren S (1988) Gastric Mucus Gel Layer Thickness Measured by Direct Light Microscopy: An Experimental Study in the Rat. Scand J Gastroenterol 23:1160-1164Google Scholar
  213. Sarosiek J, Marshall BJ, Peura DA, Hoffman S, Feng T, McCallum RW (1991) Gastroduodenal mucus gel thickness in patients with Helicobacter pylori: a method for assessment of biopsy specimens. Am J Gastroenterol 86:729-734Google Scholar
  214. Savidge TC, Smith MW, Mayel-Afshar S, Collins AJ, Freeman TC (1994) Selective regulation of epithelial gene expression in rabbit Peyer’s patch tissue. Pflügers Arch 428:391-399Google Scholar
  215. Sawaguchi A, Ishihara K, Kawano J, Oinuma T, Hotta K, Suganuma T (2002) Fluid dynamics of the excretory flow of zymogenic and mucin contents in rat gastric gland processed by high-pressure freezing/freeze substitution. J Histochem Cytochem 50:223-234Google Scholar
  216. Schafer JA, Andreoli TE (1986) Principles of water and nonelectrolyte transport across membranes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of Membrane Disorders. Plenum, New York, pp 177-190Google Scholar
  217. Schneider WR, Doetsch RN (1974) Effect of viscosity on bacterial motility. J Bacteriol 117:696-701Google Scholar
  218. Schultsz C, van den Berg FM, ten Kate FW, Tytgat GNJ, Dankert J (1999) The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117:1089-1097Google Scholar
  219. Sellers LA, Allen A, Morris ER, Ross-Murphy SB (1991) The rheology of pig small intestinal and colonic mucus: weakening of gel structure by non-mucin components. Biochim Biophys Acta 1115:174-179Google Scholar
  220. Semenza G (1986) Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2:255-307Google Scholar
  221. Sheahan DG, Jervis HR (1976) Comparative histochemistry of gastrointestinal mucosubstances. Am J Anat 146:103-131Google Scholar
  222. Shen L, Turner JR (2006) Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol 290:G577-582Google Scholar
  223. Shogren R, Gerken TA, Jentoft N (1989) Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28:5525-5536Google Scholar
  224. Silver DL, Wang N, Xiao X, Tall AR (2001) High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 276:25287-25239Google Scholar
  225. Smart J (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57:1556-1568Google Scholar
  226. Smith GW, Wiggins PM, Lee SP, Tasman-Jones C (1986) Diffusion of butyrate through pig colonic mucus in vitro. Clin Sci 70:271-276Google Scholar
  227. Smithson KW, Millar DB, Jacobs LR, Gray GM (1981) Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science 214:1241-1244Google Scholar
  228. Snoeck V, Goddeeris B, Cox E (2005) The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes and Infection 7:997-1004Google Scholar
  229. Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183-193Google Scholar
  230. Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflügers Arch 447:722-727Google Scholar
  231. Stein WD (1967) The movement of molecules across cell membranes. Academic Press, New YorkGoogle Scholar
  232. Stern M, Walker WA (1984) Food proteins and gut mucosal barrier I. Binding and uptake of cow’s milk proteins by adult rat jejunum in vitro. Am J Physiol 246:G556-562Google Scholar
  233. Strocchi A, Levitt MD (1993) Role of villous surface area in absorption science versus religion. Dig Dis Sci 38:385-387Google Scholar
  234. Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57-92Google Scholar
  235. Su F, Brands R, Wang Z, Verdant C, Bruhn A, Cai Y, Raaben W, Wulferink M, Vincent JL (2006) Beneficial effects of alkaline phosphatase in septic shock. Crit Care Med 34:2182-2187Google Scholar
  236. Swidsinski A, Loening-Baucke V, Theissig F, Engelhardt H, Bengmark S, Koch S, Lochs H, Doerffel Y (2007a) Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56:343-350Google Scholar
  237. Swidsinski A, Sydora BC, Doerffel Y, Loening-Baucke V, Vaneechoutte M, Lupicki M, Scholze J, Lochs H, Dieleman LA (2007b) Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm Bowel Dis 13:963-970Google Scholar
  238. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159-169Google Scholar
  239. Taylor C, Allen A, Dettmar PW, Pearson JP (2003) The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4:922-927Google Scholar
  240. Taylor C, Allen A, Dettmar PW, Pearson JP (2004) Two rheologically different gastric mucus secretions with different putative functions. Biochim Biophys Acta 1674:131-138Google Scholar
  241. Taylor C, Draget KI, Pearson JP, Smidsrød O (2005) Mucous systems show a novel mechanical response to applied deformation. Biomacromolecules 6:1524-1530Google Scholar
  242. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47-61Google Scholar
  243. Thomson AB, Dietschy JM (1977) Derivation of the equations that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol 64:277-294Google Scholar
  244. Tirosh B, Rubinstein A (1998) Migration of adhesive and nonadhesive particles in the rat intestine under altered mucus secretion conditions. J Pharm Sci 87:453-456Google Scholar
  245. Travis S, Menzies I (1992) Intestinal permeability: functional assessment and significance. Clin Sci 82:471-488Google Scholar
  246. Tsai HH, Dwarakanath AD, Hart CA, Milton JD, Rhodes JM (1995) Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Br Med J 36:570-576Google Scholar
  247. Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273:C1378-1385Google Scholar
  248. Turner NC, Martin GP, Marriott C (1985) The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents. J Pharm Pharmacol 37:776-780Google Scholar
  249. Ugolev A (1989) Membrane digestion: new facts and concepts. Mir PublishersGoogle Scholar
  250. Ugolev AM (1962) Membrane digestion. Bull Exp Biol Med 52:874-877Google Scholar
  251. Ugolev AM, De Laey P (1973) Membrane digestion a concept of enzymic hydrolysis on cell membranes. Biochim Biophys Acta 300:105-128Google Scholar
  252. Ugolev AM, Smirnova LF, Iezuitova NN, Timofeeva NM, Mityushova NM, Egorova VV, Parshkov EM (1979) Distribution of some adsorbed and intrinsic enzymes between the mucosal cells of the rat small intestine and the apical glycocalyx separated from them. FEBS Lett 104:35-38Google Scholar
  253. Van der Waaij LA (2003) The interaction between the mucosal immune system and the commensal microflora of the colon. Phd Thesis, Rijksuniversiteit, GroningenGoogle Scholar
  254. van Veen SQ, van Vliet AK, Wulferink M, Brands R, Boermeester MA, van Gulik TM (2005) Bovine Intestinal Alkaline Phosphatase Attenuates the Inflammatory Response in Secondary Peritonitis in Mice. Infect Immun 73:4309-4314Google Scholar
  255. Vecchi M, Torgano G, Monti M, Berti E, Agape D, Primignani M, Ronchi G, Franchis R (1987) Evaluation of structural and secretory glycoconjugates in normal human jejunum by means of lectin histochemistry. Histochem Cell Biol 86:359-364Google Scholar
  256. Velez M, De Keersmaecker S, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140-148Google Scholar
  257. Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157-176Google Scholar
  258. Veerman EC, Valentijn-Benz M, Nieuw Amerongen AV (1989) Viscosity of human salivary mucins: Effect of pH and ionic strength and role of sialic acid. J Biol Buccale 17:297-306Google Scholar
  259. Waheed AA, Gupta PD (1997) Changes in structural and functional properties of rat intestinal brush border membrane during starvation. Life Sci 61:2425-2433Google Scholar
  260. Waigh TA, Papagiannopoulos A, Voice A, Bansil R, Unwin AP, Dewhurst CD, Turner B, Afdhal N (2002) Entanglement Coupling in Porcine Stomach Mucin. Langmuir 18:7188-7195Google Scholar
  261. Walker AW, Duncan SH, Harmsen HJM, Holtrop G, Welling GW, Flint HJ (2008) The species composition of the human intestinal microbiota differs between particle associated and liquid phase communities. Environ Microbiol 10:3275-3283Google Scholar
  262. Watson CJ, Rowland M, Warhurst G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol 281:C388-397Google Scholar
  263. Westergaard H, Dietschy JM (1974) Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest 54:718-732Google Scholar
  264. Westergaard H, Holtermuller KH, Dietschy JM (1986) Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am J Physiol 250:G727-735Google Scholar
  265. Winne D (1978) Dependence of intestinal absorption in vivo on the unstirred layer. Naunyn Schmiedebergs Arch Pharmacol 304:175-181Google Scholar
  266. Winne D (1979) Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn Schmiedebergs Arch Pharmacol 307:265-274Google Scholar
  267. Winne D (1989) Effect of villosity and distension on the absorptive and secretory flux in the small intestine. J Theor Biol 139:155-186Google Scholar
  268. Winne D, Kopf S, Ulmer ML (1979) Role of unstirred layer in intestinal absorption of phenylalanine in vivo. Biochim Biophys Acta 550:120-130Google Scholar
  269. Womack WA, Mailman D, Kvietys PR, Granger DN (1988a) Neurohumoral control of villous motility. Am J Physiol 255:G162-167Google Scholar
  270. Womack WA, Tygart PK, Mailman D, Kvietys PR, Granger DN (1988b) Villous motility: relationship to lymph flow and blood flow in the dog jejunum. Gastroenterology 94:977-983Google Scholar
  271. Yakubov GE, McColl J, Bongaerts JH, Ramsden JJ (2009) Viscous Boundary Lubrication of Hydrophobic Surfaces by Mucin. Langmuir 25:2313-2321.Google Scholar
  272. Yakubov GE, Papagiannopoulos A, Rat E, Waigh TA (2007) Charge and interfacial behavior of short side-chain heavily glycosylated porcine stomach mucin. Biomacromolecules 8:3791-3799Google Scholar
  273. Yang DH, Kasamo H, Miyauchi M, Tsuyama S, Murata F (1996) Ontogeny of sulphated glycoconjugate-producing cells in the rat fundic gland. Histochem J 28:33-43Google Scholar
  274. Ymele-Leki P, Ross JM (2007) Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl Environ Microbiol 73:1834-1841Google Scholar
  275. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660-703Google Scholar
  276. Zeuthen T (1983) Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolarities. J Membr Biol 76:113-122Google Scholar
  277. Zeuthen T (2010) Water-Transporting Proteins. J Membr Biol 234:57-73Google Scholar
  278. Zeuthen T, Hamann S, La Cour M (1996) Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J Physiol 497:3-17Google Scholar
  279. Zeuthen T, Zeuthen E, MacAulay N (2007) Water transport by GLUT2 expressed in Xenopus laevis oocytes. J Physiol 579:345-361Google Scholar
  280. Zhao J, Liao D, Yang J, Gregersen H (2003) Viscoelastic behavior of small intestine in streptozotocin-induced diabetic rats. Dig Dis Sci 48:2271-2277Google Scholar
  281. Zheng D, Taylor GT, Gyananath G (1994) Influence of laminar flow velocity and nutrient concentration on attachment of marine bacterioplankton. Biofouling 8:107-120Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Food Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations