Spatial Cyberinfrastructure: Building New Pathways for Geospatial Semantics on Existing Infrastructures

  • Francis Harvey
  • Robert G. Raskin
Part of the Semantic Web and Beyond book series (ADSW, volume 12)


Spatial data infrastructures (SDI), with technological and conceptual roots stretching back multiple decades, are moving into a new era through the development of spatial cyberinfrastructures (spatial CI) that account for geospatial semantics. While the technology and concepts share many similarities, spatial cyberinfrastructures distinctly focus on the provision of information to support scientific knowledge sharing. These cyberinfrastructures are increasingly connected into an ecology of scientific knowledge sharing based on the formalization of geospatial semantics and support for shared knowledge and collective intelligence. We trace the development of cyberinfrastructures from spatial data infrastructures as the potential framework for geospatial semantical interoperability. The chapter also points to substantial semantic research challenges and the potential of spatial cyberinfrastructures.


Resource Description Framework Collective Intelligence Spatial Data Infrastructure Open Geospatial Consortium Geographic Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bamberger, W.J., Sharing geographic information among local government agencies in the San Diego region, in Sharing Geographic Information, H. Onsrud and G. Rushton, Editors. 1995, Center for Urban Policy Research: New Brunswick, NJ. p. 119–137.Google Scholar
  2. 2.
    Burmanje, D. (2005) Spatial Data Infrastructures and Land Administration in Europe.Google Scholar
  3. 3.
    Crompvoets, J., National Spatial Data Clearinghouses. 2006, Wageningen, The Netherlands: Wageningen University.Google Scholar
  4. 4.
    de Man, W.H.E., Understanding SDI: Complexity and institionalization. International Journal of Geographical Information Science, 2006. 20(3): p. 329–343.CrossRefGoogle Scholar
  5. 5.
    Georgiadou, Y. and J. Stoter, SDI for public governance–implications for evaluation research, in A Multi-View Framework to Assess Spatial Data Infrastructures, J. Crompvoets, et al., Editors. 2009, Space for Geo-Information (RGI): Wageningen. p. 51–68.Google Scholar
  6. 6.
    Johnson, R., Z. Nedovic-Budic, and K. Covert, Lessons from Practice. A Guidebook to Organizing and Sustaining Geodata Collaboratives. 2001, GeoData Alliance: Reston, VA.Google Scholar
  7. 7.
    Masser, I. and M. Wegener, Brave new GIS worlds, in GIS Diffusion: The Adoption and Use of Geographical Information Systems in Local Government in Europe, H. Masser, H. Campbell, and M. Craglia, Editors. 1996, Taylor & Francis: London.Google Scholar
  8. 8.
    Nedovic-Budic, Z., J.K. Pinto, and L. Warnecke, GIS database development and exchange: interaction mechanisms and motivations. URISA Journal, 2004. 16(1): p. 16–29.Google Scholar
  9. 9.
    Obermeyer, N., Reducing inter-organizational conflict to facilitate sharing geographic information, in Sharing Geographic Information, H. Onsrud and G. Rushton, Editors. 1995, Center for Urban Policy Research: New Brunswick, NJ. p. 138–148.Google Scholar
  10. 10.
    Rajabifard, A., et al., The role of sub-national government and the private sector in future spatial data infrastructures. International Journal of Geographical Information Science, 2006. 20(7): p. 727–742.CrossRefGoogle Scholar
  11. 11.
    Tulloch, D.L. and F. Harvey, When Data Sharing Becomes Institutionalized: Best Practices in Local Government Geographic Information Relationships. URISA Journal, 2008. 19(2): p. 51–59.Google Scholar
  12. 12.
    Gahegan, M., et al., Connecting GEON: Making sense of the myriad resources, researchers and concepts that comprise a geoscience cyberinfrastructure. Computers and Geosciences, 2009. 35(4): p. 836–854.CrossRefGoogle Scholar
  13. 13.
    Ribes, D. and G.C. Bowker, Between meaning and machine: Learning to represent the knowledge of communities Information and Organization, 2009. 19(4).Google Scholar
  14. 14.
    Burrough, P.A., Principles of Geographical Information Systems for Land Resource Assessment. 1987, Oxford: Oxford University Press.Google Scholar
  15. 15.
    Chrisman, N.R. Challenges for Research in Geographic Information Systems. in International Geographic Information Systems Symposium. 1987. Arlington, VA: NASA.Google Scholar
  16. 16.
    Dobson, J., Automated Geography. The Professional Geographer, 1983. 35(2): p. 135–143.CrossRefGoogle Scholar
  17. 17.
    Robinove, C., Principles of Logic and the Use of Digital Geographic Information Systems. 1986, U.S. Geological Survey: Washington D.C.Google Scholar
  18. 18.
    Tomlinson, R.F. Geographic Information Systems - A new frontier. in International Symposium on Spatial Data Handling. 1984. Zurich.Google Scholar
  19. 19.
    Abler, R.F., Everything in its Place: GPS, GIS, and Geography in the 1990s. Professional Geographer, 1993. 45(2): p. 131–139.CrossRefGoogle Scholar
  20. 20.
    Armstrong, M., On automated geography! The Professional Geographer, 1993. 45(4): p. 440–442.Google Scholar
  21. 21.
    Bonham-Carter, G.F., Geographic Information Systems for Geoscientists. Modelling with GIS. Computer Methods in the Geosciences. Vol. 13. 1994, Tarrytown: Pergamon.Google Scholar
  22. 22.
    Craig, W.J., Why we can’t share data: Institutional Inertia, in Sharing Geographic Information, H.J. Onsrud and G. Rushton, Editors. 1995, Center for Urban Policy Research: New Brunswick, NJ. p. 107–118.Google Scholar
  23. 23.
    Desham, P., M.P. Armstrong, and K.K. Kemp, Collaborative Spatial Decision Making. 1995, NCGIA: Santa Barbara, CA.Google Scholar
  24. 24.
    Elwood, S. and H. Leitner, GIS and community-based planning: Exploring the diversity of neighborhood perspectives and needs. Cartography and Geographic Information Systems, 1998. 25(2): p. 77–88.CrossRefGoogle Scholar
  25. 25.
    Goodchild, M. Cartographic futures on a digital earth. in International Cartographic Congress. 1999. Ottawa, Canada: ICA,.Google Scholar
  26. 26.
    Reeve, D. and J. Petch, GIS, Organisations, and People. A Socio-technical Approach. GIS for beginners, ed. D. Reeve and J. Petch. 1999, London: Taylor and Francis. 214.Google Scholar
  27. 27.
    Yapa, L., Why GIS needs postmodern social theory, and vice versa, in Policy Issues in Modern Cartography, D.F.R. Taylor, Editor. 1998, Elsevier Science: London. p. xx.Google Scholar
  28. 28.
    Georgiadou, Y., S.K. Puri, and S. Sahay, Towards a potential research agenda to guide the implementation of Spatial Data Infrastructures—A case study from India. International Journal of Geographical Information Science, 2005. 19(10): p. 1113–1130.CrossRefGoogle Scholar
  29. 29.
    Puri, S.K., Technological Frames of Stakeholders Shaping the SDI Implementation: A Case Study from India Information Technology for Development, 2006. 12(4): p. 311–331.Google Scholar
  30. 30.
    Crompvoets, J., et al., eds. A Multi-View Framework to Assess Spatial Data Infrastructures. 2009, Space for Geo-Information (RGI): Wageningen.Google Scholar
  31. 31.
    Mukherjee, F. and R. Ghose, Complexities in GIS construction and spatial knowledge production in Dane county, Wisconsin. Cartography and Geographic Informaiton Science, 2009. 36(4): p. 299–314.CrossRefGoogle Scholar
  32. 32.
    Masser, I., GIS Worlds: Creating Spatial Data Infrastructures. 2005, Redlands, CA: ESRI Press.Google Scholar
  33. 33.
    Onsrud, H., Research and theory in advancing spatial data infastructure concepts. 2007, Redlands, CA: ESRI Press.Google Scholar
  34. 34.
    Parastatidis, S., E. Viegas, and T. Hey, A “Smart” Cyberinfrastructure for Research. Communications of the ACM, 2009. 52(21): p. 33–37.Google Scholar
  35. 35.
    Brodaric, B., Geo-pragmatics for the geospatial semantic web. Transactions inf GIS, 2007. 11(3): p. 453–477.CrossRefGoogle Scholar
  36. 36.
    Fonseca, F. and A. Rogriquez, From geo-pragmatics to derivation ontologies: New directions for the geospatial semantic web. Transactions in GIS, 2007. 11(3): p. 313–316.CrossRefGoogle Scholar
  37. 37.
    Wolniewicz, P., Easily-accessible digital palaeontological databases – a new perspective for the storage of palaeontological information. Geologos, 2009. 15(3–4): p. 181–188.CrossRefGoogle Scholar
  38. 38.
    Lutz, M. and D. Kolas, Rule-based discovery in spatial data infrastructure. Transactions in GIS, 2007. 11(3): p. 317–336.CrossRefGoogle Scholar
  39. 39.
    Lutz, M., Ontology-based descriptions for semantic discovery and composition of geoprocessing services. Geoinformatica, 2007. 11: p. 1–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of GeographyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations