Skip to main content

Biosensing with Nanopores and Nanotubes

  • Chapter
  • First Online:
Molecular- and Nano-Tubes

Abstract

Recent advances in nanotechnology have led to the development of new methods for fabricating membranes containing single, nanometer-sized pores. One potential application for such single-nanopore membranes is in biosensing. In particular, there has been a great deal of recent interest in using nanopores as the sensing element in resistive-pulse sensors [1–92].The resistive pulse sensing method [1–4], which is sometimes referred to as stochastic sensing [1–19], entails mounting a membrane containing a single nanopore between two halves of an electrochemical cell filled with an electrolyte solution. A transmembrane potential is applied, and the resulting ion current flowing through the electrolyte-filled nanopore is recorded versus time. As an analyte, with dimensions comparable to the nanopore diameter, is driven through the pore a momentary block in the ion current is observed, yielding a downward current-pulse. The concentration of the analyte can be determined from the frequency of these current-pulse events and the identity of the analyte is encoded in the magnitude and duration of the current pulse [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayley, H.; Martin, C.R., Resistive-pulse sensing – from microbes to molecules. Chem. Rev. 100, 2575–2594 (2000).

    CAS  Google Scholar 

  2. Choi, Y.; Baker, L.A.; Hillebrenner, H.; Martin, C.R., Biosensing with conically-shaped nanopores and nanotubes. Phys. Chem. Chem. Phys. 8, 4976–4988 (2006).

    CAS  Google Scholar 

  3. Schmidt, J., Stochastic sensors. J. Mater. Chem. 15, 831–840 (2005).

    CAS  Google Scholar 

  4. Henriquez, R.R.; Ito, T.; Sun, L.; Crooks, R.M., The resurgence of coulter counting for analyzing nanoscale objects. Analyst 129, 478–482 (2004).

    CAS  Google Scholar 

  5. Harrell, C.C., Designing Abiotic Single Nanotube Membranes for Bioanalytical Biomedical Applications. (PhD Dissertation, University of Florida, Gainesville, 2004).

    Google Scholar 

  6. Bayley, H.; Braha, O.; Gu, L., Stochastic sensing with protein pores. Adv. Mater. 12, 139–142 (2000).

    CAS  Google Scholar 

  7. Bayley, H.; Cremer, P.S., Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    CAS  Google Scholar 

  8. Kang, X.; Cheley, S.; Guan, X.; Bayley, H., Stochastic detection of enantiomers. J. Am. Chem. Soc. 128, 10684–10685 (2006).

    CAS  Google Scholar 

  9. Howorka, S.; Cheley, S.; Bayley, H., Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotech. 19, 636–639 (2001).

    CAS  Google Scholar 

  10. Astier, Y.; Braha, O.; Bayley, H., Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128, 1705–1710 (2006).

    CAS  Google Scholar 

  11. Guan, X.; Gu, L.; Cheley, S.; Braha, O.; Bayley, H., Stochastic sensing of TNT with a genetically engineered pore. Chem. Biol. Chem. 6, 1875–1881 (2005).

    CAS  Google Scholar 

  12. Kasianowicz, J.J.; Burden, D.L.; Han, L.C.; Cheley, S.; Bayley, H., Genetically engineered metal binding sites on the outside of a channel’s transmembrane β-barrel. Biophys. J. 76, 837–845 (1999).

    CAS  Google Scholar 

  13. Braha, O.; Gu, L.; Zhou, L.; Lu, X.; Cheley, S.; Bayley, H., Simultaneous stochastic sensing of divalent metal ions. Nat. Biotech. 8, 1005–1007 (2000).

    Google Scholar 

  14. Gu, L.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H., Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    CAS  Google Scholar 

  15. Cheley, S.; Gu, L.; Bayley, H., Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 9, 829–838 (2002).

    CAS  Google Scholar 

  16. Howorka, S.; Nam, J.; Bayley, H.; Kahne, D., Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew. Chem. Int. Ed. 43, 842–846 (2004).

    CAS  Google Scholar 

  17. Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H., Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotech. 18, 1091–1095 (2000).

    CAS  Google Scholar 

  18. Shin, S.; Bayley, H., Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127, 10462–10463 (2005).

    CAS  Google Scholar 

  19. Gu, L.; Cheley, S.; Bayley, H., Prolonged residence time of a noncovalent molecular adapter, β-cyclodextrin, within the lumen of a mutant α-hemolysin pore. J. Gen. Physiol. 118, 481–493 (2001).

    CAS  Google Scholar 

  20. Bayley, H.; Jayasinghe, L., Functional engineered channels and pores. Mol. Membr. Biol. 21, 209–220 (2004).

    CAS  Google Scholar 

  21. Kasianowicz, J.J.; Bezrukov, S.M., Dynamics and free energy of polymers partitioning into a nanoscale pore. Biophys. J. 69, 94–105 (1995).

    CAS  Google Scholar 

  22. Bezrukov, S.M.; Vodyanoy, I.; Brutyan, R.A.; Kaianowicz, J.J., Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).

    CAS  Google Scholar 

  23. Kasianowicz, J.J.; Henrickson, S.E.; Weetall, H.H.; Robertson, B., Simultaneous multianalyte detection wth a nanometer-scale pore. Anal. Chem. 73, 2268–2272 (2001).

    CAS  Google Scholar 

  24. Halverson, K.M.; Panchal, R.G.; Nguyen, T.L.; Gussio, R.; Little, S.F.; Misakian, M.; Bavari, S.; Kasianowicz, J.J., Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280, 34056–34062 (2005).

    CAS  Google Scholar 

  25. Henrickson, S.E.; Misakian, M.; Robertson, B.; Kasianowicz, J.J., Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060 (2000).

    CAS  Google Scholar 

  26. Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W., Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  Google Scholar 

  27. Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D., Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).

    CAS  Google Scholar 

  28. Meller, A.; Nivon, L.; Branton, D., Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    CAS  Google Scholar 

  29. Meller, A.; Branton, D., Single molecule measurement of DNA transport through a nanopore. Electrophoresis 23, 2583–2591 (2002).

    CAS  Google Scholar 

  30. Deamer, D.W. ; Branton, D., Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    CAS  Google Scholar 

  31. Kullman, L.; Winterhalter, M.; Bezrukov, S.M., Transport of maltodextrins through maltoporin: A single-channel study. Biophys. J. 82, 803–812 (2002).

    CAS  Google Scholar 

  32. Bezrukov, S.M.; Kullman, L.; Winterhalter, M., Probing sugar translocation through maltoporin at the single channel level. FEBS Lett. 476, 224–228 (2000).

    CAS  Google Scholar 

  33. Danelon, C.; Lindermann, M.; Borin, C.; Fournier, D.; Winterhalter, M., Channel-forming membrane proteins as molecular sensors. IEEE Trans. Nanobiosci. 3, 46–48 (2004).

    Google Scholar 

  34. Gouaux, J.E.; Graha, O.; Hobaugh, M.R.; Song, L.; Cheley, S.; Shustak, C.; Bayley, H., Subunit stoichiometry of staphylococcal α-hemolysin in crystals and on membranes: A heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91, 12828–12831 (1994).

    CAS  Google Scholar 

  35. Mayer, M.; Kriebel, J.K.; Tosteson, M.T.; Whitesides, G.M., Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).

    CAS  Google Scholar 

  36. DeBlois, R.W.; Bean, C.P., Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum. 41, 909–916 (1970).

    Google Scholar 

  37. DeBlois, R.W.; Uzgiris, E.E.; Cluxton, D.H.; Mazzone, H.M., Comparative measurements of size and polydispersity of several insect viruses. Anal. Biochem. 90, 273–288 (1978).

    CAS  Google Scholar 

  38. DeBlois, R.W.; Wesley, R.K.A., Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J. Virol. 23, 227–233 (1977).

    CAS  Google Scholar 

  39. DeBlois, R.W.; Bean, C.P.; Wesley, R.K.A., Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J. Colloid Interface Sci. 61, 323–335 (1977).

    CAS  Google Scholar 

  40. Spohr, R., Ions Tracks and Microtechnology Principles and Application. (Friedr. Vieweg & Sohn: Verlegsgschaft mbH, Braunschweig, 1990).

    Google Scholar 

  41. Apel, P., Swift ion effects in polymers: Industrial applications. Nucl. Instr. Meth. Phys. Res. B 208, 11 (2003).

    CAS  Google Scholar 

  42. Spohr, R., German Patent DE 2 951 376 C2, (1983). b) Spohr, R., US Patent 4 369 370, (1983).

    Google Scholar 

  43. Apel, P.Y.; Korchev, Y.E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instr. Meth. Phys. Res. B 184, (3), 337–346 (2001).

    CAS  Google Scholar 

  44. Trautmann, C.; Bouffard, S.; Spohr, R., Etching threshold for ion tracks in polyimide. Nucl. Instrum. Methods Phys. Res. B 116, 429–433 (1996).

    CAS  Google Scholar 

  45. Siwy, Z.; Apel, P.; Baur, D.; Dobrev, D.D.; Korchev, Y.E.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K.-O., Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 532–535, 1061–1066 (2003).

    Google Scholar 

  46. Wharton, J.E.; Jin, P.; Sexton, L.T.; Horne, L.P.; Sherrill, S.A.; Martin, C.R., A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small accepted (2007).

    Google Scholar 

  47. Harrell, C.C.; Siwy, Z.S.; Martin, C.R., Conical nanopore membranes: Controlling the nanopore shape. Small 2, 194–198 (2006).

    CAS  Google Scholar 

  48. Scopece, P.; Baker, L.A.; Ugo, P.; Martin, C.R., Conical nanopore membranes: Solvent shaping of nanopores. Nanotechnology 17, 3951–3956 (2006).

    CAS  Google Scholar 

  49. Yu, S.; Lee, S.B.; Martin, C.R., Electrophoretic protein transport in gold nanotube membranes. Anal. Chem. 75, 1239–1244 (2003).

    CAS  Google Scholar 

  50. Menon, V.P.; Martin, C.R., Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67, 1920–1928 (1995).

    CAS  Google Scholar 

  51. Hille, B. Ion Channels of Excitable Membranes, 3rd ed. (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  52. Voet, D.; Voet, J.D. Biochemistry (Wiley, New York, 2004).

    Google Scholar 

  53. Sigworth, F.J., Structural biology: Life’s transistors. Nature 423, (6935), 21–22 (2003).

    CAS  Google Scholar 

  54. Lee, S.; Zhang, Y.; White, H.S.; Harrell, C.C.; Martin, C.R., Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy. Anal. Chem. 76, 6108–6115 (2004).

    CAS  Google Scholar 

  55. Siwy, Z.; Gu, Y.; Spohr, H.A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y.E., Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett. 60, (3), 349–355 (2002).

    CAS  Google Scholar 

  56. Siwy, Z.; Dobrev, D.; Neumann, R.; Trautmann, C.; Voss, K., Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A: Mater. Sci. Process. 76, (5), 781–785 (2003).

    CAS  Google Scholar 

  57. Siwy, Z.; Apel, P.; Dobrev, D.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K., Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Methods Phys. Res. B 208, 143–148 (2003).

    CAS  Google Scholar 

  58. Siwy, Z.; Mercik, S.; Weron, K.; Spohr, R.; Wolf, A.; Grzywna, Z., Comparison of single channel potassium current in biological and synthetic systems – dependence on voltage. Acta Physica Polonica, B 31, (5), 1125–1141 (2000).

    CAS  Google Scholar 

  59. Siwy, Z.; Fulinski, A., A nanodevice for rectification and pumping ions. Am. J. Phys. 72, 567–574 (2004).

    CAS  Google Scholar 

  60. Baker, L.; Jin, P.; Martin, C.R., Biomaterials and biotechnologies base on nanotube membranes. Crit. Rev. Solid State 30, 183–205 (2005).

    CAS  Google Scholar 

  61. Siwy, Z.; Heins, E.; Harrell, C.C.; Kohli, P.; Martin, C.R., Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 126, 10850–10851 (2004).

    CAS  Google Scholar 

  62. Harrell, C.C.; Kohli, P.; Siwy, Z.; Martin, C.R., DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 126, 15646–15647 (2004).

    CAS  Google Scholar 

  63. Heins, E.A.; Baker, L.A.; Siwy, Z.S.; Mota, M.O.; Martin, C.R., Effect of crown ether on ion currents through synthetic membranes containing a single conically shaped nanopore. J. Phys. Chem. 109, 18400–18407 (2005).

    CAS  Google Scholar 

  64. Siwy, Z.S.; Powell, M.R.; Petrov, A.; Kalman, E.; Trautmann, C.; Eisenberg, R.S., Calcium-induced voltage gating in single conical nanopores. Nano Lett. 6, 1729–1734 (2006).

    CAS  Google Scholar 

  65. Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M.J.; Golovchenko, J.A., Ion-beam sculpting at nanometre length scale. Nature 412, 166–169 (2001).

    CAS  Google Scholar 

  66. Li, J.; Gershow, M.; Stein, D.; Brandin, E.; Golovchenko, J.A., DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003).

    CAS  Google Scholar 

  67. Fologea, D.; Gershow, M.; Ledden, B.; McNabb, D.S.; Golovchenko, J.A.; Li, J., Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    CAS  Google Scholar 

  68. Chen, P.; Mitsui, T.; Farmer, D.B.; Golovchenko, J.; Gordon, R.G.; Branton, D., Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    CAS  Google Scholar 

  69. Chen, P.; Gu, J.; Brandin, E.; Kin, Y.R.; Wang, Q.; Branton, D., Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    CAS  Google Scholar 

  70. Storm, A.J.; Chen, J.H.; Ling, X.S.; Zandbergen, H.W.; Dekker, C., Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    CAS  Google Scholar 

  71. Storm, A.J.; Chen, J.H.; Zandbergen, H.W.; Dekker, C., Translocation of double-stranded DNA through a silicon oxide nanopore. Phys. Rev. 71, 051903 (2005).

    CAS  Google Scholar 

  72. Ho, C.; Qiao, R.; Heng, J.B.; Chatterjee, A.; Timp, R.J.; Aluru, N.R.; Timp, G., Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl. Acad. Sci. USA 102, 10445–10450 (2005).

    CAS  Google Scholar 

  73. Heng, J.B.; Ho, C.; Kim, T.; Timp, R.; Aksimentiew, A.; Grinkova, Y.V.; Sligar, S.; Schulten, K.; Timp, G., Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004).

    CAS  Google Scholar 

  74. Heng, J.B.; Aksimentiev, A.; Ho, C.; Marks, P.; Grinkova, Y.V.; Sligar, S.; Schulten, K.; Timp, G., The electromechanics of DNA in a synthetic nanopore. Biophys. J. 90, 1098–1106 (2006).

    CAS  Google Scholar 

  75. Chang, H.; Kosari, F.; Andreadakis, G.; Alam, M.A.; Vasmatzis, G.; Bashir, R., DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett. 4, 1551–1556 (2004).

    CAS  Google Scholar 

  76. Iqbal, S.M.; Akin, D.; Bashir, R., Solid-state nanopore channels with DNA selectivity. Nat. Nanotech. 2, 243–248 (2007).

    CAS  Google Scholar 

  77. Han, A.; Schurmann, G.; Mondin, G.; Bitterli, R.A.; Hegelbach, N.G.; de Rooij, N.F.; Staufer, U., Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88, 093901 (2006).

    Google Scholar 

  78. Saleh, O.A.; Sohn, L.L., Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev. Sci. Instrum. 72, 4449–4451 (2001).

    CAS  Google Scholar 

  79. Saleh, O.A.; Sohn, L.L., An artificial nanopore for molecular sensing. Nano Lett. 3, 37–38 (2003).

    CAS  Google Scholar 

  80. Saleh, O.A.; Sohn, L.L., Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc. Natl. Acad. Sci. USA 100, 820–824 (2003).

    CAS  Google Scholar 

  81. Carbonaro, A.; Sohn, L.L., A resistive-pulse sensor chip for multianalyte immunoassays. Lab on a Chip 5, 1155–1160 (2005).

    CAS  Google Scholar 

  82. Sun, L.; Crooks, R.M, Fabrication and characterization of single pores for modeling mass transport across porous membranes. Langmuir 15, 738–741 (1999).

    CAS  Google Scholar 

  83. Sun, L.; Crooks, R.M., Single carbon nanotube membranes: A well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122, 12340–12345 (2000).

    CAS  Google Scholar 

  84. Ito, T.; Sun, L.; Crooks, R.M., Simultaneous determination of size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter. Anal. Chem. 75, 2399–2406 (2003).

    CAS  Google Scholar 

  85. Ito, T.; Sun, L.; Henriquez, R.R.; Crooks, R.M., A carbon nanotube-based Coulter nanoparticle counter. Acc. Chem. Res. 37, 937–945 (2004).

    CAS  Google Scholar 

  86. Ito, T.; Sun, L.; Crooks, R.M., Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem. Commun. 13, 1482–1483 (2003).

    Google Scholar 

  87. Uram, J.D.; Ke, K.; Hunt, A.J.; Mayer, M., Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem. Int. Ed. 45, 2281–2285 (2006).

    CAS  Google Scholar 

  88. Park, S.R.; Peng, H.; Ling, X.S., Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3, 116–119 (2007).

    CAS  Google Scholar 

  89. Heins, E.A.; Siwy, Z.S.; Baker, L.A.; Martin, C.R., Detecting single porphyrin molecules in a conically-shaped synthetic nanopore. Nano Lett. 5, 1824–1829 (2005).

    CAS  Google Scholar 

  90. Harrell, C.C.; Choi, Y.; Horne, L.P.; Baker, L.A.; Siwy, Z.S.; Martin, C.R., Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22, 10837–10843 (2006).

    CAS  Google Scholar 

  91. Mara, A.; Siwy, Z.; Trautmann, C.; Wan, J.; Kamme, F., An asymmetric polymer nanopore for single molecule detection. Nano Lett. 4, 497–501 (2004).

    CAS  Google Scholar 

  92. Sexton, L.T.; Horne, L.P.; Sherrill, S.; Bishop, G.W.; Baker, L.A.; Martin, C.R., Resistive pulse investigations of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. submitted (2007).

    Google Scholar 

  93. Siwy, Z.; Trofin, L.; Kohli, P.; Baker, L.A.; Trautmann, C.; Martin, C.R., Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005).

    CAS  Google Scholar 

  94. Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 2nd ed. (John Wiley and Sons, New York, 2001).

    Google Scholar 

  95. Poretics, http://www.sterlitech.com

  96. Wolf, A.; Reber, N.; Apel, P.Y.; Fischer, B.E.; Spohr, R., Electrolyte transport in charged single ion track capillaries. Nucl. Instr. Methods B 105, 291–293 (1995).

    CAS  Google Scholar 

  97. March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (McGraw-Hill Book Company, New York, p. 383, 1992).

    Google Scholar 

  98. Harrell, C.; Lee, S.; Martin, C.R., Synthetic single-nanopore and nanotube membranes. Anal. Chem. 75, 6861–6867 (2003).

    CAS  Google Scholar 

  99. Foss, C.A., Jr.; Hornyak, G.L.; Stockert, J.A.; Martin, C.R., Template-synthesized nanoscopic gold particles: Optical spectra and effects of particle size and shape. J. Phys. Chem. 98, 2963–2971 (1994).

    CAS  Google Scholar 

  100. Brumlik, C.J.; Menon, V.P.; Martin, C.R., Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J. Mater. Res. 9, 1174–1183 (1994).

    CAS  Google Scholar 

  101. Martin, C.R., Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 28, 61–68 (1995).

    CAS  Google Scholar 

  102. Parthasarathy, R.V.; Phani, K.L.N.; Martin, C.R., Template synthesis of graphitic nanotubules. Adv. Mater. 7, 896–897 (1995).

    CAS  Google Scholar 

  103. Nishizawa, M.; Menon, V.P.; Martin, C.R., Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science (Washington, D.C.) 268, 700–702 (1995).

    CAS  Google Scholar 

  104. Lakshmi, B.B.; Dorhout, P.K.; Martin, C.R., Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 9, 857–862 (1997).

    CAS  Google Scholar 

  105. Hulteen, J.C.; Martin, C.R., Template synthesis of carbon nanotubule and nanofiber arrays. Nanoparticles Nanostructured Films 9, 235–262 (1998).

    Google Scholar 

  106. Ang, L.-M.; Hor, T.S.A.; Xu, G.-Q.; Tung, C.-H.; Zhao, S.; Wang, J.L.S., Electroless plating of metals onto carbon nanotubes activated by single-step activation method. Chem. Mater. 11, 2115–2118 (1999).

    CAS  Google Scholar 

  107. Cepak, V.M.; Martin, C.R., Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mater. 11, (5), 1363–1367 (1999).

    CAS  Google Scholar 

  108. Hou, S.; Wang, J.; Martin, C.R., Template-synthesized DNA nanotubes. J. Am. Chem. Soc. 127, 8586–8587 (2005).

    CAS  Google Scholar 

  109. Hou, S.; Wang, J.; Martin, C.R., Template-synthesized protein nanotubes. Nano Lett. 5, 231–234 (2005).

    CAS  Google Scholar 

  110. Martin, C.R.; Nishizawa, M.; Jirage, K.B.; Kang, M., Investigations of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105, 1925–1934 (2001).

    CAS  Google Scholar 

  111. Lu, H.B.; Campbell, C.T.; Castner, D.G., Attachment of functionalized poly(ethylene glycol) films to gold surfaces. Langmuir 16, 1711–1718 (2000).

    CAS  Google Scholar 

  112. Finklea, H.O.; Avery, S.; Lynch, M.; Furtsch, T., Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir 3, 409–413 (1987).

    CAS  Google Scholar 

  113. Yang, Z.; Galloway, J.A.; Yu, H., Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: Diffusion and adsorption. Langmuir 15, 8405–8411 (1999).

    CAS  Google Scholar 

  114. Bezrukov, S.M.; Krasilnikov, O.V.; Yuldasheva, L.N.; Berezhkovskii, A.M.; Rogrigues, C.J., Field-dependent effect of crown ether (18-crown-6) on ionic conductance of α-hemolysin channels. Biophys. J. 87, 3162–3171 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank the Martin Group members whose work contributed to this chapter. Parts of this work were funded by The National Science Foundation and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sexton, L.T., Horne, L.P., Martin, C.R. (2011). Biosensing with Nanopores and Nanotubes. In: Hayden, O., Nielsch, K. (eds) Molecular- and Nano-Tubes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9443-1_6

Download citation

Publish with us

Policies and ethics