Electronic Transport in Carbon Nanotube Field-Effect Transistors

  • J. Knoch
  • J. Appenzeller


In the present chapter we will discuss the electronic transport properties of carbon nanotube field-effect transistors (CNFETs). Three different device concepts will be studied in more detail: Schottky-barrier CNFETs with metallic source and drain contacts, conventional-type CNFETs with doped nanotube segments as source and drain electrodes and finally a new concept, the tunneling CNFET. As it turns out, the main factors determining the electrical behavior of CNFETs are the geometry, the one-dimensionality of the electronic transport and the way of making contacts to the nanotube. Analytical as well as simulation results will be given and compared with each other and with experimental data in order to explain the different influences on the electronic transport in CNFETs and thus on the device behavior.


Gate Voltage Channel Length Schottky Barrier Gate Oxide Short Channel Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duerkop, T.; Kim, B.M. and Fuhrer, M.S.; Properties and application of high-mobility semiconducting nanotubes, J. Phys.: Condens. Matter, 16, R553–R580 (2004).CrossRefGoogle Scholar
  2. 2.
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M. and Dai, H.; Ballistic carbon nanotube field-effect transistors, Nature, 424, 654–657 (2003).CrossRefGoogle Scholar
  3. 3.
    Saito, R.; Dresselhaus, G. and Dresselhaus, M.S.; Physical properties of carbon nanotubes, Imperial College Press, London, 1998.CrossRefGoogle Scholar
  4. 4.
    Appenzeller, J.; Lin, Y.-M.; Knoch, J.; Chen, Z. and Avouris, Ph.; 1/f noise in carbon nanotube devices – on the impact of contacts and device geometry, IEEE Trans. Nanotechnol., 6(3), 368–373 (2007).CrossRefGoogle Scholar
  5. 5.
    Appenzeller, J.; Knoch, J.; Radosavljevic, M. and Avouris, Ph.; Multi-mode transport in Schottky barrier carbon nanotube field-effect transistors, Phys. Rev. Lett., 92, 226802-1-4 (2004).Google Scholar
  6. 6.
    Appenzeller, J.; Knoch, J.; Martel, R.; Derycke, V.; Wind, S. and Avouris, Ph.; Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors, Internat. Electron Dev. Meeting 2002, Tech. Dig., 285–288 (2002).Google Scholar
  7. 7.
    Appenzeller, J.; Knoch, J.; Derycke, V.; Wind, S. and Avouris, Ph.; Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett., 89, 126801-1-4 (2002).CrossRefGoogle Scholar
  8. 8.
    Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.-M. and Avouris, Ph.; The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett., 5(7), 1497–1502 (2005).CrossRefGoogle Scholar
  9. 9.
    Guo, J.; Datta, S. and Lundstrom, M.; Assesment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors, Internat. Electron Dev. Meeting, Tech. Dig., 711–714 (2002).Google Scholar
  10. 10.
    Zhou, Ch.; Kong, J. and Dai, H.; Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters, Appl. Phys. Lett., 76, 1597–1599 (2000).CrossRefGoogle Scholar
  11. 11.
    Appenzeller, J.; Lin, Y.-M.; Knoch, J. and Avouris, Ph.; Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett., 93(19), 196805 (2004).CrossRefGoogle Scholar
  12. 12.
    Knoch, J.; Riess, W. and Appenzeller, J.; Outperforming the conventional scaling rules in the quantum-capacitance limit, IEEE Electron Dev. Lett., 29(4), 372–374 (2008).CrossRefGoogle Scholar
  13. 13.
    Young, K.K.; Short-channel effect in fully-depleted SOI MOSFET’s, IEEE Trans. Electron Dev., 36, 399–402 (1989).CrossRefGoogle Scholar
  14. 14.
    Franklin, N.R.; Wang, Q.; Tombler, T.W.; Javey, A.; Shim, M. and Dai, H.; Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Appl. Phys. Lett., 81, 913–915 (2002).CrossRefGoogle Scholar
  15. 15.
    Huang, Sh.; Woodson, M.; Smalley, R. and Liu, J.; Growth mechanism of oriented long single walled carbon nanoubes using fast heating chemical vapor deposition process, Nano Lett., 4, 1025–1028 (2004).CrossRefGoogle Scholar
  16. 16.
    Wang, Y.; Kim, M.J.; Shan, H.; Kittrell, C.; Fan, H.; Ericson, L.M.; Hwang, W.-F.; Arepalli, S.; Hauge, R.H. and Smalley, R.; Continued growth of single-walled carbon nanotubes, Nano Lett., 5, 997–1002 (2004).CrossRefGoogle Scholar
  17. 17.
    Yin, A.; Tzolov, M.; Cardimona, D.A. and Xu, J.; Template-growth of highly ordered carbon nanotube arrays on silicon, IEEE Trans Nanotechnol., 5, 564–567 (2006).CrossRefGoogle Scholar
  18. 18.
    Hannon, J.B.; Afzali, A.; Klinke, Ch. and Avouris, Ph.; Selective placement of carbon nanotubes on metal-oxide surfaces, Langmuir, 21, 8569–8671 (2005).CrossRefGoogle Scholar
  19. 19.
    Hedberg, J.; Dong, L. and Jiao, J.; Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates, Appl. Phys. Lett., 86, 143111-1-4 (2005).CrossRefGoogle Scholar
  20. 20.
    Huang, X.M.H.; Caldwell, R.; Huang, L.; Jun, S.C.; Huang, M.; Sfeir, M.Y.; O’Brien, S.P. and Hone, J.; Controlled placement of individual carbon nanotubes, Nano Lett., 5, 1515–1518 (2005).CrossRefGoogle Scholar
  21. 21.
    Zhang, G.; Wang, X.; Li, X.; Lu, Y.; Javey, A. and Dai, H.; Carbon nanotubes: From growth, placement, and assembly control to 60 mV/decade and sub-60 mV/decade tunnel transistors, IEEE Internat. Electron Dev. Meeting, Technical Digest (2006).Google Scholar
  22. 22.
    Bachtold, A.; Hadley, P.; Nakanishi, T. and Dekker, C.; Logic circuits with carbon nanotube transistors, Science, 294, 1317 (2001).CrossRefGoogle Scholar
  23. 23.
    Javey, A.; Wang, Q.; Ural, A.; Li, Y. and Dai, H.; Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators, Nano Lett., 2, 929 (2002).CrossRefGoogle Scholar
  24. 24.
    Chen, Z.; Appenzeller, J.; Lin, Y.-M.; Sippel-Oakley, J.; Rinzler, A.G.; Tang, J.; Wind, S.J.; Solomon, P.M. and Avouris, Ph.; An integrated logic circuit assembled on a single carbon nanotube, Science, 311(5768), 1735 (2006).CrossRefGoogle Scholar
  25. 25.
    Knoch, J. and Appenzeller, J.; Tunneling phenomena in carbon nanotube field-effect transistors, Phys. Stat. Solidi A, 205, 679–694 (2008).CrossRefGoogle Scholar
  26. 26.
    Sze, S.M.; Physics of semiconductor device, Wiley, New York, 1981.Google Scholar
  27. 27.
    Taur, Y. and Ning, T.H.; Fundamentals of modern VLSI devices, Cambridge University Press, Cambridge, 1998.Google Scholar
  28. 28.
    Yan, R.-H.; Ourmazd, A. and Lee, K.F.; Scaling the Si MOSFET: From bulk to SOI to bulk, IEEE Trans. Electron Dev., 39, 1704–1710 (1992).CrossRefGoogle Scholar
  29. 29.
    Wind, S.J.; Appenzeller, J. and Avouris, Ph.; Lateral scaling in carbon – nanotube transistors, Phys. Rev. Lett., 91, 058301-1-4 (2003).Google Scholar
  30. 30.
    Auth, Ch. and Plummer, J.D.; Scaling theory for cylindrical, fully depleted, surrounding gate MOSFET’s, IEEE Electron Dev. Lett., 18, 74–76 (1997).CrossRefGoogle Scholar
  31. 31.
    Knoch, J.; Mantl, S.; Lin, Y.-M.; Chen, Z.; Avouris, Ph. and Appenzeller, J.; An extended model for carbon nanotube field-effect transistors, Dev. Res. Conf. 2004, Conf. Dig., 135–136 (2004).Google Scholar
  32. 32.
    Knoch, J.; Zhang, M.; Mantl, S. and Appenzeller, J.; On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs, IEEE Trans. Electron Dev., 53(7), 1669–1674 (2006).CrossRefGoogle Scholar
  33. 33.
    Appenzeller, J.; Radosavljevic, M.; Knoch, J. and Avouris, Ph.; Tunneling versus thermionic emission in one-dimensional semiconductors, Phys. Rev. Lett., 92, 048301-1-4 (2004).Google Scholar
  34. 34.
    Knoch, J. and Appenzeller, J.; in Carbon nanotube field-effect transistors – the importance of being small. Hardware technology drivers of ambient intelligence, Springer, Berlin, 2006.Google Scholar
  35. 35.
    Lin, Y.-M.; Appenzeller, J.; Knoch, J. and Avouris, Ph.; High-performance carbon nanotube field-effect transistor with runable polaritites, IEEE Trans. Nanotechnol., 4(5), 481–489 (2005).CrossRefGoogle Scholar
  36. 36.
    Knoch, J.; Zhang, M.; Appenzeller, J. and Mantl, S.; Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors, Appl. Phys. A, 87(3), 351–357 (2007).CrossRefGoogle Scholar
  37. 37.
    Appenzeller, J.; Knoch, J.; Björk, M.T.; Riel, H.; Schmid, H. and Riess, W.; Toward nanowire electronics, IEEE Trans. Electron Dev., 55, 2827–2845 (2008).CrossRefGoogle Scholar
  38. 38.
    Datta, S.; Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge and New York, 1995.Google Scholar
  39. 39.
    Guo, J. and Lundstrom, M.; Role of phonon scattering in carbon nanotube field-effect transistors, Appl. Phys. Lett., 86, 193103 (2005).CrossRefGoogle Scholar
  40. 40.
    Knoch, J. and Appenzeller, J.; Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett., 81, 3082–3084 (2002).CrossRefGoogle Scholar
  41. 41.
    Lin, Y.-M.; Appenzeller, J. and Avouris, Ph.; Novel structures enabling bulk switching in carbon nanotube FETs, Dev. Res. Conf., Conf. Dig., 133–134 (2004).Google Scholar
  42. 42.
    Appenzeller, J.; Lin, Y.-M.; Knoch, J.; Chen, Z. and Avouris, Ph.; Comparing carbon nanotube transistors – the ideal choice: a novel tunneling device design, IEEE Trans. Electron Dev., 52(12), 2568–2576 (2005).CrossRefGoogle Scholar
  43. 43.
    Knoch, J.; Mantl, S. and Appenzeller, J.; Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts, Solid-State Electron, 49, 73–76 (2005).CrossRefGoogle Scholar
  44. 44.
    John, D.L.; Castro, L.C. and Pulfrey, D.L.; Quantum capacitance in nanoscale device modeling, J. Appl. Phys., 96, 5180–5184 (2004).CrossRefGoogle Scholar
  45. 45.
    Luryi, S.; Quantum capacitance devices, Appl. Phys. Lett., 52, 501–503 (1988).CrossRefGoogle Scholar
  46. 46.
    Bhuwalka, K.K.; Novel tunneling devices for future CMOS technologies, PhD thesis, University of the German Armed Forces, Munich, 2005.Google Scholar
  47. 47.
    Koswatta, S.O.; Nikonov, D.E. and Lundstrom, M.S.; Computational study of carbon nanotube p-i-n Tunnel FET, IEEE Internat. Electron Dev. Meeting, Tech. Dig. (2005).Google Scholar
  48. 48.
    Zhang, Q.; Zhao, W. and Seabaugh, A.; Low-subthreshold-swing tunnel transistors, IEEE Electron Dev. Lett., 27(4), 297–300 (2006).CrossRefGoogle Scholar
  49. 49.
    Knoch, J. and Appenzeller, J.; A novel concept for field-effect transistors – the tunneling carbon nanotube FET, Dev. Res. Conf., Conf. Digest, 153–156 (2005).Google Scholar
  50. 50.
    Knoch, J.; Mantl, S. and Appenzeller, J.; Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices, Solid-State Electron, 51(4), 572–578 (2007).CrossRefGoogle Scholar
  51. 51.
    Pennington, G. and Goldsman, N.; Low-field semiclassical carrier transport in semiconducting carbon nanotubes, Phys. Rev. B, 71, 205318 (2005).CrossRefGoogle Scholar
  52. 52.
    Boucart, K. and Ionescu, A.; Double-gate tunnel FET with high-k gate dielectric, IEEE Trans. Electron Dev., 54(7), 1725–1733 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Information TechnologyRWTH Aachen UniversityAachenGermany
  2. 2.School of Electrical and Computer Engineering, Purdue UniversityWest LafayetteUSA

Personalised recommendations