Combining Acoustic and Electric Hearing

  • Christopher W. Turner
  • Bruce J. Gantz
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 39)


There are numerous advantages for patients who can add residual acoustic hearing to the electric stimulation of a cochlear implant. When cochlear implantation was first becoming accepted, patients were typically profoundly deaf in both ears, so any possible advantages of also using acoustic hearing were non-existent. However, as time progressed and the range of patients considered for implantation was expanded to include those with more and more residual hearing, this remaining acoustic hearing became a factor to consider. The residual acoustic hearing was at first most often located in the non-implanted ear, especially since the trend has been to place the implant in the poorer ear if there was any aidable hearing. In recent years, residual acoustic hearing has been preserved even in the implanted ear, whereby acoustic and electric hearing are combined in the same ear. It turns out that the acoustic hearing that remains in either ear after cochlear implantation can still contribute to overall performance in some very significant ways, including cases where, by itself, the acoustic hearing produces only minimal or no word recognition.


Hair Cell Speech Recognition Cochlear Implant Outer Hair Cell Cochlear Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by NIDCD grants RO1DC000377 and 2P50 DC00242, and by GCRC/NCRR grant RR00059.


  1. Adunka, O., Gstoettner, W., Hambek, M., Unkelbach, M. H., Radeloff, A., & Kiefer, J. (2004). Preservation of basal inner ear structures in cochlear implantation. Otorhinolaryngology-Head and Neck Surgery, 66(6), 306–312.Google Scholar
  2. Balkany, T. J., Connell, S. S., Hodges, A. V., Payne, S. L., Telischi, F. F., Eshraghi, A. A., Adrien, A., Angeli, S. I., Germani, R., Messiah, S., & Arheart, K. L. (2006). Conservation of residual acoustic hearing after cochlear implantation. Otology & Neurotology, 27, 1083–1088.CrossRefGoogle Scholar
  3. Briggs, R. J., Tykocinski, M., Stidham, K., & Robinson J. B. (2005). Cochleostomy site: implications for electrode placement and hearing preservation. Acta Oto-Laryngologica, 125, 870–876.PubMedCrossRefGoogle Scholar
  4. Brown, C., & Bacon, S. (2009). Achieving electric-acoustic benefit with a modulated tone. Ear and Hearing, 30(5), 489–493.PubMedCrossRefGoogle Scholar
  5. Chang, J. E., Bai, J. Y., & Zeng F. G. (2006). Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise. IEEE Transactions on Biomedical-Engineering, 53, 2598–2601.PubMedCrossRefGoogle Scholar
  6. Ching, T. Y. (2005). The evidence calls for making binaural-bimodal fitting routine. Hearing Journal, 58, 32–41.Google Scholar
  7. Ching, T. Y. C., Incerti, P., & Hill, M. (2004). Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear and Hearing, 25, 9–21.PubMedCrossRefGoogle Scholar
  8. Ciocca, V., Frabcusm, A.L., Aisha, R., & Wong, L. (2002). The perception of Cantonese lexical tones by early-deafened cochlear implantees. Journal of the Acoustical Society of America, 111, 2250–2256.PubMedCrossRefGoogle Scholar
  9. Coco, A., Epp, S. B., Fallon, J. B., Xu, J., Millard, R. E., & Shepherd, R. K. (2007). Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hearing Research, 225, 60–70.PubMedCrossRefGoogle Scholar
  10. Dorman, M. F., & Gifford, R. H. (2010). Combining acoustic and electric stimulation in the service of speech recognition. International Journal of Audiology, 49, 912–919.Google Scholar
  11. Dorman, M. F., Smith, L. S., Smith, M., & Parkin, J. L. (1996). Frequency discrimination and speech recognition by patients who use the Ineraid and continuous interleaved sampling cochlear-implant processors. Journal of the Acoustical Society of America, 99, 1174–1184.PubMedCrossRefGoogle Scholar
  12. Dorman, M. F., Gifford, R. H., Spahr, A. J., McKarns, S. A. (2008). The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies. Audiology & Neurotology, 13(2), 105–112.CrossRefGoogle Scholar
  13. Dubno, J. R., & Dirks, D. D. (1989). Auditory filter characteristics and consonant recognition for hearing-impaired listeners. Journal of the Acoustical Society of America 85, 1666–1675.PubMedCrossRefGoogle Scholar
  14. Duqeusnoy, A. J. (1983). Effect of a single interfering noise or speech source upon the binaural sentence intelligibility of aged persons. Journal of the Acoustical Society of America, 74, 739–743.CrossRefGoogle Scholar
  15. Fishman, K., Shannon, R. V., & Slattery, W. H. (1997). Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Journal of Speech, Language, and Hearing Research, 40, 1201–1215.PubMedGoogle Scholar
  16. Fu, Q. J., & Shannon R. V. (1999). Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Ear and Hearing, 20(4), 332–344.PubMedCrossRefGoogle Scholar
  17. Fu, Q. J., Shannon, R. V., & Wang, X. (1998). Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. Journal of the Acoustical Society of America, 104, 3586–3596.PubMedCrossRefGoogle Scholar
  18. Fu, Q.-J., Zeng, F.-G., Shannon, R. V., & Soli, S. D. (1998). Importance of tonal envelope cues in Chinese speech recognition. Journal of the Acoustical Society of America, 104, 505–510.PubMedCrossRefGoogle Scholar
  19. Gantz, B. J., & Turner, C. W. (2003). Combining acoustic and electric hearing. Laryngoscope, 113, 1726–1730.PubMedCrossRefGoogle Scholar
  20. Gantz, B. J., Rubinstein J. T., Tyler, R. S., Teagle, H., Cohen, N. L., Waltzman, S. B., Miyamoto, R. T., & Kirk. I. (2000). Long-term results of cochlear implants in children with residual hearing. Annals of Otology, Rhinology, and Laryngology, 109(Suppl. 185, 12, Pt. 2), 33–36.Google Scholar
  21. Gantz, B.J., Turner, C., & Gfeller, K.E. (2005). Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope, 115, 796–802.PubMedCrossRefGoogle Scholar
  22. Gantz, B. J., Turner, C. W., & Gfeller, K. (2006). Acoustic plus electric speech processing: results of a multicenter clinical trial of the Iowa/Nucleus Hybrid Implant. Audiology & Neurotology, 11(Suppl. 1), 63–68.CrossRefGoogle Scholar
  23. Gantz, B. J., Hansen, M. R, Turner, C. W., Oleson, J. J., Reiss, L. A., & Parkinson, A. J. (2009). Hybrid 10 clinical trial: preliminary results. Audiology & Neurotology, 14, 32–38.CrossRefGoogle Scholar
  24. Gfeller, K., Turner, C., Woodworth, G., Mehr, M., Fearn, R., Witt, S., & Stordahl, J. (2002). Recognition of familiar melodies by adult cochlear implant recipients and normal hearing adults. Cochlear Implants International, 3, 29–53.PubMedCrossRefGoogle Scholar
  25. Glasberg, B., & Moore, B. C. J. (1986). Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. Journal of the Acoustical Society of America, 79, 1020–1033.PubMedCrossRefGoogle Scholar
  26. Gstoettner, W., Kiefer, J., Baumgartner, W.-D., Pok, S., Peters, S., & Adunka, O. (2004). Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Oto-Laryngologica, 124, 348–352.PubMedCrossRefGoogle Scholar
  27. Henry, B. A., Turner, C. W., & Behrens, A. (2005). Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired and cochlear implant listeners. Journal of the Acoustical Society of America, 118, 1111–1121.PubMedCrossRefGoogle Scholar
  28. Hodges, A. V., Schloffman, J., and Balkany, T. (1997). Conservation of residual hearing with cochlear implants. American Journal of Otology, 18, 179–183.PubMedCrossRefGoogle Scholar
  29. James, C., Albegger, K., Battmer, R., Burdo, S., Deggouj, N., Deguine, O., Dillier, N., Gersdorff, M., Laszig, R., Lenarz, T., Rodriguez, M. M., Mondain, M., Offeciers, E., Macías, Á. R., Ramsden, R., Sterkers, O., Von Wallenberg, E., Weber, B., Fraysse, B. (2005). Preservation of residual hearing with cochlear implantation: how and why. Acta Oto-Laryngologica, 125(5), 481–491(11).PubMedCrossRefGoogle Scholar
  30. Kiefer, J., Pok, M., Adunka, O., Sturzbecher, E., Baumgartner, W., Schmidt, M., Tillein, J., Yue, Q., & Gstoettner, W. (2005). Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiology & Neurootology, 10, 134–144.CrossRefGoogle Scholar
  31. Kong, Y. Y., & Carlyon, R. P. (2007). Improved speech recognition in noise in simulated binaurally combined acoustic and electric stimulation. Journal of the Acoustical Society of America, 121, 3717–3727.PubMedCrossRefGoogle Scholar
  32. Kong, Y., Cruz, R., Jones, J., & Zeng, F. (2004). Music perception with temporal cues in acoustic and electric hearing. Ear and Hearing, 25, 173–185.PubMedCrossRefGoogle Scholar
  33. Kong, Y. Y., Stickney, G. S., & Zeng, F. G. (2005). Speech and melody recognition in binaurally combined acoustic and electric hearing. Journal of the Acoustical Society of America, 117, 1351–1361.PubMedCrossRefGoogle Scholar
  34. Kwon, B. J., & Turner, C. W. (2001). Consonant identification under maskers with sinusoidal modulation. Journal of the Acoustical Society of America, 110, 1130–1140.PubMedCrossRefGoogle Scholar
  35. Lehnhardt, E. (1993). Intracochlear placement of cochlear implant electrodes in soft surgery ­technique. HNO, 41(7), 356–359.PubMedGoogle Scholar
  36. Lenarz, T., Stöver, T., Buechner, A., Lesinski-Schiedat, A., Patrick, J., Pesch, J. (2009). Hearing conservation surgery using the Hybrid-L electrode. Results from the first clinical trial at the Medical University of Hannover. Audiology & Neurotology, 14(Suppl. 1), 22–31.CrossRefGoogle Scholar
  37. Liberman, M. C., & Dodds, L. W. (1984). Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Research, 16, 55–74.PubMedCrossRefGoogle Scholar
  38. Litovsky, R. Y., Parkinson, A., & Arcaroli, J. (2009). Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear and Hearing, 30, 419–431.PubMedCrossRefGoogle Scholar
  39. Long, C. J., Portnuff, C., Muralimanohar, R., & Litovsky, R. (2009). Binaural cues via acoustic and electric stimulation: simulations. Paper presented at the Convergence of Hearing Aid and Cochlear Implant Technology Workshop, Miami, FL.Google Scholar
  40. Miller, G. A., & Licklider, J. C. R. (1950). The intelligibility of interrupted speech. Journal of the Acoustical Society of America, 22, 167–173.CrossRefGoogle Scholar
  41. Miller, C. A., Abbas, P. J., Robinson, B. K., Nourski, K. V., Zhang, F., & Jeng, F-C. (2006). Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains. Journal of the Association of Research in Otolaryngology, 7, 195–210.CrossRefGoogle Scholar
  42. Miller, C. A., Abbas, P. J., Robinson, B. K., Nourski, K. V., Zhjang, F., & Jeng, F.-C. (2009). Auditory nerve fiber responses to combined acoustic and electric stimulation. Journal of the Association of Research in Otolaryngology, 10, 425–445.CrossRefGoogle Scholar
  43. Moxon, E. C. (1971). Neural and mechanical responses to electric stimulation of the cat’s inner ear (Unpublished doctoral dissertation). Massachusetts Institute of Technology.Google Scholar
  44. Nelson, P., Jin, S.-H., Carney, A., & Nelson, D. A. (2003). Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 113, 961–968.PubMedCrossRefGoogle Scholar
  45. Ni, D., Shepard, R. K., Seldon, H. L., Xu, S., Clark, G. M., & Millard, R. E. (1992). Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: normal hearing kittens. Hearing Research, 62, 63–81.PubMedCrossRefGoogle Scholar
  46. Nittrouer, S., & Chapman, C. (2009). The effects of bilateral electric and bimodal electric-acoustic stimulation on language development. Trends in Amplification, 13, 190–205.PubMedCrossRefGoogle Scholar
  47. Nourski, K. V., Abbas, P. J, Miller, C. A., Robinson, B. K, & Jeng, F.-C. (2007). Acoustic–electric interactions in the guinea pig auditory nerve: simultaneous and forward masking of the electrically evoked compoundaction potential. Hearing Research, 232, 87–103.PubMedCrossRefGoogle Scholar
  48. Peng, S. P., Tomblin, B., & Turner, C. W. (2008). Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing. Ear and Hearing, 29(3), 336–351.PubMedCrossRefGoogle Scholar
  49. Qin, M. K., & Oxenham, A. J. (2003). Effects of simulated cochlear implant processing on speech reception in fluctuating maskers. Journal of the Acoustical Society of America, 114, 446–454.PubMedCrossRefGoogle Scholar
  50. Reiss, L. R., Turner, C. W., Erenberg, S. R., & Gantz, B. (2007). Changes in pitch with a cochlear implant over time. Journal of the Association of Research in Otolaryngology, 8(2), 241–257.CrossRefGoogle Scholar
  51. Reiss, L. R., Gantz, B., & Turner, C. W. (2008). Cochlear implant speech processor frequency allocations may influence pitch perception. Otology & Neurology, 29, 160–167.CrossRefGoogle Scholar
  52. Rubinstein, J. T., Parkinson, W. S. Tyler, R. S., & Gantz, B. J. (1999a). Residual speech recognition and cochlear implant performance: effects of implantation criteria. American Journal of Otolaryngology, 20, 445–452.Google Scholar
  53. Rubinstein, J. T., Wilson, B. S., Finley, C. C., & Abbas, P. J. (1999b). Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 127, 108–118.PubMedCrossRefGoogle Scholar
  54. Shallop, J., Arndt, P., & Turnacliff, K. (1992). Expanded indications for cochlear implantation: perceptual results in seven adults with residual hearing. Journal of Speech-Language Pathology & Applied Behavior Analysis, 16, 141–148.Google Scholar
  55. Shannon, R.V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304.PubMedCrossRefGoogle Scholar
  56. Shepherd, R. K., Clark, G. M., & Black, R. C. (1983). Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results. Acta Oto-Laryngologica, Suppl. 399, 19–31.CrossRefGoogle Scholar
  57. Skarzynski, H., Lorens, A., & Piotrowska, A. (2003). A new method of partial deafness treatment. Medical Science Monitor, 9, 26–30.Google Scholar
  58. Skarzynski, H., Lorens, A., & Piotrowska, A. (2007). Preservation of low frequency hearing in partial deafness cochlear implantation using the round window surgical approach. Acta Oto-Laryngologica, 127, 41–48.PubMedCrossRefGoogle Scholar
  59. Snyder, R. L, Bierer, J. A, & Middlebrooks, J. C. (2004). Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. Journal of the Association of Research in Otolaryngology, 5, 305–322.CrossRefGoogle Scholar
  60. Stickney, G. S., Zeng, F. G., Litovsky, R. V., & Assmann, P. F. (2004). Cochlear implant speech recognition with speech maskers. Journal of the Acoustic Society of America, 116, 1081–1091.CrossRefGoogle Scholar
  61. Stypulkowski, P. H., & Van Den Honert, C. (1984). Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hearing Research, 14, 205–223.PubMedCrossRefGoogle Scholar
  62. Trees, D. A., & Turner, C. W. (1986). Spread of masking in normal subjects and in subject with hearing loss. Audiology, 25, 70–83.PubMedCrossRefGoogle Scholar
  63. Turner, C. W. (2006). Hearing loss and the limits of amplification. Audiology & Neurotology, 11(Suppl. 1), 2–5.CrossRefGoogle Scholar
  64. Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., & Henry, B. A. (2004). Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. Journal of the Acoustical Society of America, 115, 1729–1735.PubMedCrossRefGoogle Scholar
  65. Turner, C. W., Reiss, L. A., & Gantz, B. J. (2008). Combined acoustic and electric hearing: preserving residual acoustic hearing. Hearing Research, 242, 164–171.PubMedCrossRefGoogle Scholar
  66. Van Den Honert, C., & Stypulkowski, P. H. (1984). Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hearing Research, 14, 225–243.PubMedCrossRefGoogle Scholar
  67. Von Ilberg, C., Kiefer, J., Tillein, J., Pfenningdorff, T., Hartmann, R., Sturzebacher, E., & Klinke, R. (1999). Electro-acoustic stimulation of the auditory system. Journal for Oto-Rhino-Laryngology, 61, 334–340.Google Scholar
  68. Wilson, B., Wolford, R., Lawson, D., & Schatzer, R. (2002). Speech processors for auditory prostheses. Third Quarterly Progress Report, Neural Prosthesis Program (contract N01-DC-2-1002 NIH). Washington, DC.Google Scholar
  69. Xu, J., Shepard,, R. K., Milllard, R. E., & Clark, G. M. (1997). Chronic electrical stimulation of the auditory system at high stimulus rates: a physiological and histopathological study. Hearing Research, 105, 1–29.PubMedCrossRefGoogle Scholar
  70. Xu, L., Tsai, Y., & Pfingst, B. E. (2002). Features of stimulation affecting tonal-speech perception: implications for cochlear implants. Journal of the Acoustic Society of America, 112, 247–258.CrossRefGoogle Scholar
  71. Zhang, T., Spahr, A., & Dorman, M. (2010). Information from the voice fundamental frequency (F0) accounts for the majority of the benefit when acoustic stimulation is added to electric stimulation. Ear and Hearing, 31, 63–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Communication Sciences and DisordersUniversity of IowaIowa CityUSA

Personalised recommendations