Library-Independent Bacterial Source Tracking Methods

  • Stefan Wuertz
  • Dan Wang
  • Georg H. Reischer
  • Andreas H. Farnleitner
Chapter

Abstract

In recent years numerous library-independent methods for microbial source tracking have become available either relying on selective cultivation of source-specific bacteria or, increasingly, on direct detection of source-specific genetic markers. The scientific foundation for the detection of source-specific bacterial populations is discussed and an overview is provided of the methods developed in this field in the last 30 years. Another focus is on potential advantages and drawbacks as well as method performance characteristics in method development, evaluation and application. Unfortunately, few methods have been evaluated and applied beyond the regional geographical scale, making it clear that the global toolbox for bacterial MST is still in the development and evaluation stage. However, recent advances in statistical methods for interpretation of MST results will help account for less than perfect diagnostic sensitivities and specificities, while integrated study design must consider pollution source complexity and dynamics. Numerous successful MST applications have proven the practicality and potential of library-independent bacterial MST methods for the characterization and identification of fecal pollution sources.

Keywords

Bacterial fecal sourc tracking Cultivation Direct detection Molecular analysis PCR qPCR Bacteroidales 

References

  1. Adams LM, Simmons CP, Robins-Browne RM et al (1997) Identification and characterization of a K88- and CS31A-like operon of a rabbit enteropathogenic Escherichia coli strain which encodes fimbriae involved in the colonization of rabbit intestine. Infect Immun 65:5222–5230PubMedGoogle Scholar
  2. Ahmed W, Stewart J, Powell D et al (2008a) A real-time polymerase chain reaction assay for quantitative detection of the human-specific Enterococci surface protein marker in sewage and environmental waters. Environ Microbiol 10(12):3255–3264PubMedCrossRefGoogle Scholar
  3. Ahmed W, Stewart J, Powell D et al (2008b) Evaluation of the host-specificity and prevalence of Enterococci surface protein (esp) marker in sewage and its application for sourcing human fecal pollution. J Environ Qual 37:1583–1588PubMedCrossRefGoogle Scholar
  4. Ahmed W, Powell D, Gardner T et al (2008c) Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Water Sci Technol 58:579–586PubMedCrossRefGoogle Scholar
  5. Ahmed W, Stewart J, Gardner T et al (2008d) Evaluation of Bacteroides markers for the detection of human faecal pollution. Lett Appl Microbiol 46:237–242PubMedCrossRefGoogle Scholar
  6. Ahmed W, Goonetilleke A, Gardner T et al (2009a) Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking. Water Res 43:4872–4877PubMedCrossRefGoogle Scholar
  7. Ahmed W, Goonetilleke A, Gardner T et al (2009b) Comparison of molecular markers to detect fresh sewage in environmental waters. Water Res 43(9):4908–4917PubMedCrossRefGoogle Scholar
  8. Al-Diwany LJ, Cross T (1978) Ecological studies on Nocardioforms and other Actinomycetes in aquatic habitats. In: Mordarski, M., Kurylowicz, W. and Jeljaszewicz, J. (ed) Nocardia and Streptomyces, Proceedings of the international symposium on Nocardia and Streptomyces, 153–160. Gustav Fischer Verlag, New York, NYGoogle Scholar
  9. Amador JA, Sotomayor-Ramírez D, Bachoon D et al (2008) Tracking human faecal contamination in tropical reservoirs in Puerto Rico. Lakes & Reservoirs: Research and Management 13(4):301–317CrossRefGoogle Scholar
  10. Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71(6):3041–3048PubMedCrossRefGoogle Scholar
  11. APHA (1992) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington D.C.Google Scholar
  12. Bachoon DS, Nichols TW, Oetter DR et al (2009) Assessment of faecal pollution and relative algal abundances in Lakes Oconee and Sinclair, Georgia, USA. Lakes & Reservoirs: Research and Management 14:139–149CrossRefGoogle Scholar
  13. Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRefGoogle Scholar
  14. Bae S, Wuertz S (2009a) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75(9):2940–2944PubMedCrossRefGoogle Scholar
  15. Bae S, Wuertz S (2009b) Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43(19):4850–4859PubMedCrossRefGoogle Scholar
  16. Bahaka D, Neut C, Khattabi A et al (1993) Phenotypic and genomic analyses of human strains ­belonging or related to Bifidobacterium-longum, Bifidobacterium-infantis, and Bifidobacterium-breve. Int J Syst Bacteriol 43:565–573PubMedCrossRefGoogle Scholar
  17. Balleste E, Bonjoch X, Belanche LA et al (2010) Molecular indicators used in the development of predictive models for microbial source tracking. Appl Environ Microbiol 76(6):1789–1795PubMedCrossRefGoogle Scholar
  18. Bambic D, Wuertz S, Ban M (2007) Fecal source tracking using human toolkits based on library-independent chemical and microbial markers. P Water Environ F 15:931–945CrossRefGoogle Scholar
  19. Bell A, Layton AC, Sayler GS et al (2009) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. J Environ Qual 38:1224–1232PubMedCrossRefGoogle Scholar
  20. Bernhard AE, Field KG (2000a) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:1587–1594PubMedCrossRefGoogle Scholar
  21. Bernhard AE and Field KG (2000b) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteriodales-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66(10):4571–4574PubMedCrossRefGoogle Scholar
  22. Blanch AR, Belanche-Munoz L, Bonjoch X et al (2004) Tracking the origin of faecal pollution in surface water: an ongoing project within the European Union research programme. J Water Health 2:249–260PubMedGoogle Scholar
  23. Blanch AR, Belanche-Munoz L, Bonjoch X et al (2006) Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl Environ Microbiol 72:5915–5926PubMedCrossRefGoogle Scholar
  24. Boehm AB, Yamahara KM, Nelson KL (2009) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol, 43:8046–8052PubMedCrossRefGoogle Scholar
  25. Bonjoch X, Balleste E, Blanch AR (2004) Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl Environ Microbiol 70:3171–3175PubMedCrossRefGoogle Scholar
  26. Bonjoch X, Balleste E, Blanch AR (2005) Enumeration of bifidobacterial populations with selective media to determine the source of waterborne fecal pollution. Water Res 39:1621–1627PubMedCrossRefGoogle Scholar
  27. Bonjoch X, Lucena F, Blanch AR (2009) The persistence of bifidobacteria populations in a river measured by molecular and culture techniques. J Appl Microbiol 107:1178–1185PubMedCrossRefGoogle Scholar
  28. Booth J, Brion GM (2004) The utility of the AC/TC ratio for watershed management: a case study. Water Sci Technol 50:199–203PubMedGoogle Scholar
  29. Bosshard F, Riedel K, Schneider T et al (2010) Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol 12(11):2931–45PubMedCrossRefGoogle Scholar
  30. Bower PA, Scopel CO, McLellan SL (2005) Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Appl Environ Microbiol 71(12):8305–8313PubMedCrossRefGoogle Scholar
  31. Buchan A, Alber M, Hodson RE (2001) Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenic spacer region. FEMS Microbiol Ecol 35:313–321PubMedGoogle Scholar
  32. Burtscher MM, Zibuschka F, Mach RL et al (2009) Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA 35:495–504Google Scholar
  33. Byamukama D, Mach RL, Farnleitner AH (2005) Discrimination efficacy of fecal pollution detection in different aquatic habitats of a high altitude tropical country using presumptive coliform, Escherichia coli and Clostridium perfringens spores. Appl Environ Microbiol 71(1):65–71PubMedCrossRefGoogle Scholar
  34. Byappanahalli MN, Przybyla-Kelly K, Shively DA et al (2008) Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination. Environ Sci Technol 42:8014–8020PubMedCrossRefGoogle Scholar
  35. Cawthorn DM, Witthuhn RC (2008) Selective PCR detection of viable Enterobacter sakazakii cells ­utilizing propidium monoazide or ethidium bromide monoazide. J Appl Microbiol 105:1178–1185PubMedCrossRefGoogle Scholar
  36. Chern EC, Tsai Y, Olson BH (2004a) Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl Environ Microbiol 70(1):356–362PubMedCrossRefGoogle Scholar
  37. Chern EC, Olson BH (2004b) Development of a biomarker to detect bird fecal waste in ­environmental waters. In: Perez JMS, Andion LG, Brebbia CA (ed) Coastal environment V: Incorporating oil spill studies. 95-102, WIT Press, Southampton, UK.Google Scholar
  38. Chern EC, Brenner KP, Haugland RA et al (2009) Comparison of fecal indicator bacteria densities in marine recreational waters by QPCR. Water Qual Expo Health 1:203–214CrossRefGoogle Scholar
  39. Cho JC, Kim SJ (2000) Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl Environ Microbiol 66:956–965PubMedCrossRefGoogle Scholar
  40. Cimenti M, Biswas N, Bewtra JK et al (2005) Evaluation of microbial indicators for the determination of bacterial groundwater contamination sources. Water Air Soil Poll 168:157–169CrossRefGoogle Scholar
  41. Coakley T, Brion GM, Fryar A (2009) Relationships between indicators of faecal load, source, and age: developing a multi-indicator approach for risk characterization. In: Rose JB (ed) 15th Int Symp Health Related Microbiol/Internat Water Association, Naxos, GreeceGoogle Scholar
  42. Converse RR, Blackwood AD, Noble RT et al (2009) Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters. Water Res 43(19):4828–4837PubMedCrossRefGoogle Scholar
  43. Deep R (2006) Probability and statistics: with integrated software routines. Elsevier: Amsterdam.Google Scholar
  44. D’Elia TV, Cooper CR, Johnston CG (2007) Source tracking of Escherichia coli by 16S-23S intergenic spacer region denaturing gradient gel elctrophoresis (DGGE) of the rrnB ribosomal operon. Can J Microbiol 53(10):1174–1184PubMedCrossRefGoogle Scholar
  45. Dick LK, Field KG (2004) Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70(9):5695–5697PubMedCrossRefGoogle Scholar
  46. Dick LK, Simonich MT, Field KG (2005a) Microplate subtractive hybridization to enrich for Bacteroidales genetic markers for fecal source identification. Appl Environ Microbiol 71(6):3179–3183PubMedCrossRefGoogle Scholar
  47. Dick LK, Bernhard AE, Field KG et al (2005b) Host distribution of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71(6):3184–3191PubMedCrossRefGoogle Scholar
  48. Dick LK, Stelzer EA, Stoeckel DM et al (2010) Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Appl Environ Microbiol 76(10):3255–3262PubMedCrossRefGoogle Scholar
  49. Dorai-Raj S, O’Grady J, Colleran E (2009) Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Res 43(19):4980–4988PubMedCrossRefGoogle Scholar
  50. Dunbar J, Barns SM, Ticknor LO et al (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045PubMedCrossRefGoogle Scholar
  51. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  52. Esseili MA, Kassem II, Sigler V (2008) Optimization of DGGE community fingerprinting for characterizing Escherichia coli communities associated with fecal pollution. Water Res 42:4467–4476.PubMedCrossRefGoogle Scholar
  53. Evison LM, James A (1975) Bifidobacterium as an indicator of faecal pollution in water. Prog Water Technol 7:57–66Google Scholar
  54. Farnleitner AH, Zibuschka F, Burtscher MM et al (2004) Eubacterial 16S-rDNA amplicon profiling: a rapid technique for comparison and differentiation of heterotrophic plate count communities from drinking water. Int J Food Microbiol 92:333–345PubMedCrossRefGoogle Scholar
  55. Farnleitner AH, Wilhartitz I, Ryzinska G et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259PubMedCrossRefGoogle Scholar
  56. Farnleitner AH, Ryzinska-Paier G, Reischer GH et al (2010) Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal ­pollution in alpine mountainous water resources. J Appl Microbiol 109:1599–1608CrossRefGoogle Scholar
  57. Feachem R (1975) An improved role for faecal coliform to faecal streptococci ratios in the differentiation between human and non-human pollution sources. Water Res 9:689–690CrossRefGoogle Scholar
  58. Field KG, Chern EC, Dick LK et al (2003) A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. J Water Health 1:181–194PubMedGoogle Scholar
  59. Flekna G, Stefanic P, Hein I et al (2007) Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158:405–412PubMedCrossRefGoogle Scholar
  60. Fogarty LR, Voytek MA (2005) Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species. Appl Environ Microbiol 71:5999–6007PubMedCrossRefGoogle Scholar
  61. Fujioka R, Sian-Denton C, Borja M et al (1999) Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J Appl Microbiol 85:83s–89sCrossRefGoogle Scholar
  62. Gawler AH, Beechere JE, Brandãoc J, Carroll NM, Falcãoc L, Gourmelon M, Masterson B, Nunes B, Portera J, Rincé A, Rodrigues R, Thorp M, Walters JM and Meijer WG. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res 41(16):378–384PubMedCrossRefGoogle Scholar
  63. Gedalanga PB, Olson BH (2009) Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples. Appl Microbiol Biotechnol 82:587–596PubMedCrossRefGoogle Scholar
  64. Geldreich EE, Best LC, Kenner BA et al (1968) Bacteriological aspects of stormwater pollution. J Water Pollut Con F 40:1861Google Scholar
  65. Geldreich EE, Kenner BA (1969) Concepts of fecal streptococci in stream pollution. J Water Pollut Con F 41:R336Google Scholar
  66. Geldreich EE (1976) Fecal coliform and fecal Streptococcus density relationships in waste discharges and receiving waters. Crit Rev Env Contr 6:349–369CrossRefGoogle Scholar
  67. Gilpin BJ, Gregor JE, Savill MG (2002) Identification of the source of faecal pollution in contaminated rivers. Water Sci Technol 46(3):9–15Google Scholar
  68. Gilpin BJ, James T, Savil MG et al (2003) The use of chemical and molecular microbial indicators for faecal source identification. Water Sci Technol 47(3):39–43PubMedGoogle Scholar
  69. Gordon DM (2001) Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147:1079–1085PubMedGoogle Scholar
  70. Gourmelon M, Caprais MP, Rince A et al (2007) Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries. Appl Environ Microbiol 73(15):4857–4866PubMedCrossRefGoogle Scholar
  71. Gourmelon M, Caprais MP, Le Mennec C, et al. (2010) Application of library-independent microbial source tracking methods for identifying the sources of faecal contamination in coastal areas. Water Sci Technol 61:1401–1409PubMedCrossRefGoogle Scholar
  72. Griffith JF, Cao Y, Weisberg SB et al (2009) Evaluation of rapid methods and novel indicators for assessing microbiological beach water quality. Water Res 43(19):4900–4907PubMedCrossRefGoogle Scholar
  73. Gyllenberg H, Niemela S, Sormunen T (1960) Survival of bifidobacteria in water as compared with that of coliform bacteria and Enterococci. Appl Microbiol 8:20–22PubMedGoogle Scholar
  74. Hamilton MJ, Yan T, Sadowsky MJ (2006) Development of goose- and duck-specific DNA ­markers to determine sources of Escherichia coli in waterways. Appl Environ Microbiol 72(6):4012–4019PubMedCrossRefGoogle Scholar
  75. Hammerum AM, Jensen LB (2002) Prevalence of esp, encoding the enterococcal surface protein, in Enterococcus faecalis and Enterococcus faecium isolates from hospital patients, poultry, and pigs in Denmark. J Clin Microbiol 40(11):4396PubMedCrossRefGoogle Scholar
  76. Hartel PG, Rodgers K, McDonald JL et al (2008) Combining targeted sampling and fluorometry to identify human fecal contamination in a freshwater creek. J Water Health 6(1):105PubMedCrossRefGoogle Scholar
  77. Harwood VJ, Delahoya NC, Ulrich RM et al (2004) Molecular confirmation of Enterococcus faecalis and E-faecium from clinical, faecal and environmental sources. Lett Appl Microbiol 38:476–482PubMedCrossRefGoogle Scholar
  78. Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C (2009) Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res 43:4812–4819PubMedCrossRefGoogle Scholar
  79. Haugland RA, Siefring SC, Dufour AP et al (2005) Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res 39:559–568PubMedCrossRefGoogle Scholar
  80. Hill RT, Straube WL, Palmisano AC et al (1996) Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal. Appl Environ Microbiol 62:1741–1746PubMedGoogle Scholar
  81. Holdeman V, Cato ET, Moore WEC (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31:359–375PubMedGoogle Scholar
  82. Houston, A.C. (1902) Second report of the Royal Commission on treating and disposing of sewage, LondonGoogle Scholar
  83. Ishii S, Sadowsky MJ (2008) Escherichia coli in the environment: Implications for water quality and human health. Microbes Environ 23:101–108PubMedCrossRefGoogle Scholar
  84. Ishii S, Sadowsky MJ (2009) Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ Microbiol 11(4): 733–740PubMedCrossRefGoogle Scholar
  85. ISO (2002) Water Quality. Detection and enumeration of Clostridium perfringens – Part 2: Method by membrane filtration (ISO/CD 6461-2). Geneva, Switzerland, International Organization of StandardizationGoogle Scholar
  86. Jagals P, Grabow WOK, de Villiers JC (1995) Evaluation of indicators for assessment of human and animal faecal pollution of surface run-off. Water Sci Technol 31:235–241Google Scholar
  87. Jagals P, Grabow WOK (1996) An evaluation of sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution of environmental water. Water SA 22:235–238Google Scholar
  88. Jenkins MW, Tiwari S, Wuertz S et al (2009) Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays. Water Res 43(19):4956–4966PubMedCrossRefGoogle Scholar
  89. Jeong JY, Park HD, Lee KH et al (2010) Quantitative analysis of human- and cow-specific 16S rRNA gene markers for assessment of fecal pollution in river waters by real-time PCR. J Microbiol Biotechn 20:245–253Google Scholar
  90. Jeter SN, McDermott CM, McLellan SL et al (2009) Bacteroidales diversity in ring-billed gulls (Laurus delawarensis) residing at lake Michigan beaches. Appl Environ Microbiol 75(6):1525–1533PubMedCrossRefGoogle Scholar
  91. Jiang SC, Chu W, Gedalanga PB et al (2007) Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Environ Microbiol 76:927–934Google Scholar
  92. Johnson JR, O’Bryan TT, Stell AL et al (2000) Evidence of commonality between canine and human extraintestinal pathogenic Escherichia coli strains that express papG allele III. Infect Immun 68:3327–3336PubMedCrossRefGoogle Scholar
  93. Kreader CA (1995) Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol 61:1171–1179PubMedGoogle Scholar
  94. Khatib LA, Tsai YL, Olson BH (2002) A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic Escherichia coli. Appl Microbiol Biotechnol 59:97–104PubMedCrossRefGoogle Scholar
  95. Khatib LA, Tsai YL and Olson BH (2003) A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli. Appl Microbiol Biotechnol 63:231–238PubMedCrossRefGoogle Scholar
  96. Kildare BJ, Rajal V, Wuertz S et al (2006) Calleguas creek watershed quantitative microbial source tracking study. http://www.calleguas.com/ccwmp/DRAFT_CCW_MST_061406.pdf
  97. Kildare BJ, Leutenegger CM, Wuertz S et al (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:3701–3715PubMedCrossRefGoogle Scholar
  98. Kim J, Pitts B, Yoon J et al (2008) Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Ch 52:14461453CrossRefGoogle Scholar
  99. King EL, Bachoon DS, Gates KW (2007) Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis. J Microbiol Meth 68(1):76-81CrossRefGoogle Scholar
  100. Kirschner AK, Eiler A, Zechmeister TC et al (2002) Extremely productive microbial communities in shallow saline pools respond immediately to changing meteorological conditions. Environ Microbiol 4:546–555PubMedCrossRefGoogle Scholar
  101. Klein and Houston (1898) Report on bacteriological evidence of presumably recent, and therefore dangerous, sewage pollution of elsewise potable waters. 27th Report Annual Report of the Local Government Board 1897-98, Supplement Report of Local Officer. 4:318–325Google Scholar
  102. Knee KL, Layton BA, Paytan A (2008) Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kauai (Hawaii, USA). Estuar Coast 31:607–622CrossRefGoogle Scholar
  103. Kollanur, D., Reischer, G.H:, Sommer, R., Wehrspaun, C.,Stadler, H, Mach, R.L., Zerobin. W. and A. H. Farnleitner (2010) Quantitative Assessment of Faecal Pollution Sources in Alpine Spring Catchments as a Basis for Microbial Hazard- and Risk Assessment. Submitted to Water Science and Technology. Google Scholar
  104. Kreader CA (1998) Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl Environ Microbiol 64(10):4103–4105PubMedGoogle Scholar
  105. Kuntz RL, Hartel PG, Rodgers K et al (2004) Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Res 38:3551–3557PubMedCrossRefGoogle Scholar
  106. Lamendella R, Santo Domingo JW, Oerther DB et al (2008) Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74(3):575–584PubMedCrossRefGoogle Scholar
  107. Lamendella R, Santo Domingo JW, Oerther DB et al (2009) Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific “Bacteroidales” populations. Appl Environ Microbiol 75(18):5787–5796PubMedCrossRefGoogle Scholar
  108. Lawson PA, Collins MD, Foster G et al (2006) Catellicoccus marimammalium gen. nov., sp. nov., a novel gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int J Syst Evol Micr 56:429–432CrossRefGoogle Scholar
  109. Layton BA, McKay L, Sayler G et al (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224PubMedCrossRefGoogle Scholar
  110. Layton BA, Walters SP, Boehm AB (2009) Distribution and diversity of the enterococcal surface protein (esp) gene in animal hosts and the Pacific coast environment. J Appl Microbiol 106:1521–1531PubMedCrossRefGoogle Scholar
  111. Layton BA, Walters SP, Lam LH et al (2010) Enterococcus species distribution among human and animal hosts using multiplex PCR. J Appl Microbiol 109(2):539–547PubMedGoogle Scholar
  112. Leclerc H, Devriese LA, Mossel DAA (1996) Taxonomical changes in intestinal (faecal) Enterococci and Streptococci: consequences on their use as indicators of faecal contamination in drinking water. J Appl Bacteriol 81:459–466PubMedGoogle Scholar
  113. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  114. Ley RE, Hamady M, Lozupone C et al (2008a) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefGoogle Scholar
  115. Ley RE, Lozupone CA, Hamady M et al (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788PubMedCrossRefGoogle Scholar
  116. Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Archeol Microbiol 169:397–403CrossRefGoogle Scholar
  117. Long SC, Shafer E, Arango C et al (2003) Evaluation of three source tracking indicator organisms for watershed management. Water Supply 52:565–575Google Scholar
  118. Lu J, Santo Domingo JW, Shanks OC (2007) Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Res 41:3561–3574PubMedCrossRefGoogle Scholar
  119. Lu J, Santo Domingo JW, Hill S et al (2008a) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74(13):3969–3976PubMedCrossRefGoogle Scholar
  120. Lu J, Santo Domingo JW (2008b) Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences. J Microbiol 46(5):469–477PubMedCrossRefGoogle Scholar
  121. Lu J, Santo Domingo JW, Edge TA et al (2009) Microbial diversity and host-specific sequences of Canada goose feces. Appl Environ Microbiol 75(18):5919–5926PubMedCrossRefGoogle Scholar
  122. Ludwig W, Schleifer KH (2000) How quantitative is quantitative PCR with respect to cell counts? Syst Appl Microbiol 23(4):556–562PubMedCrossRefGoogle Scholar
  123. Lynch PA, Gilpin BJ, Savill MG et al (2002) The detection of Bifidobacterium adolescentis by colony hybridization as an indicator of human fecal pollution. J Appl Microbiol 92:526–533PubMedCrossRefGoogle Scholar
  124. Mara DD, Oragui JI (1981) Occurrence of Rhodococcus coprophilus and associated Actinomycetes in feces, sewage, and freshwater. Appl Environ Microbiol 42:1037–1042PubMedGoogle Scholar
  125. Mara DD, Oragui JI (1983) Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution. J Appl Bacteriol 55:349–357PubMedCrossRefGoogle Scholar
  126. Mara DD, Oragui J (1985) Bacteriological methods for distinguishing between human and animal faecal pollution of water: results of fieldwork in Nigeria and Zimbabwe. B World Health Organ 63:773–783Google Scholar
  127. Margulies M, Egholm M, Altman WE et al (2006) Genome sequencing in microfabricated high-density picolitre reactors (vol 437, pg 376, 2005). Nature 441:120–120CrossRefGoogle Scholar
  128. Matsuki T, Watanabe K, Tanaka R et al (2004) Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173PubMedCrossRefGoogle Scholar
  129. McDonald JL, Hartel PG, Payne KA et al (2006) Identifying sources of fecal contamination inexpensively with targeted sampling and bacterial source tracking. J Environ Qual 35:889-897PubMedCrossRefGoogle Scholar
  130. McFeters GA, Bissonne GK, Jezeski JJ et al (1974) Comparative survival of indicator bacteria and enteric pathogens in well water. Appl Microbiol 27:823–829PubMedGoogle Scholar
  131. McLain JET, Ryu H, Abbaszadegan M et al (2009) Lack of specificity for PCR assays targeting human Bacteroides 16S rRNA gene: cross-amplification with fish feces. FEMS Microbiol Lett 299(1):38–43PubMedCrossRefGoogle Scholar
  132. McLellan SL, Huse SM, Mueller-Spitz SR et al (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392PubMedCrossRefGoogle Scholar
  133. McQuaig SM, Scott TM, Lukasik JO et al (2006) Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. Appl Environ Microbiol 72:7567–7574PubMedCrossRefGoogle Scholar
  134. McQuaig SM, Scott TM, Harwood VJ et al (2009) Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75(11):3379–3388PubMedCrossRefGoogle Scholar
  135. Meays CL, Broersma K, Mazumder A et al (2004) Source tracking fecal bacteria in water: a critical review of current methods. J Environ Manage 73:71–79PubMedCrossRefGoogle Scholar
  136. Mieszkin S, Yala JF, Gourmelon M et al (2009) Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J Appl Microbiol 108(3):974–984PubMedCrossRefGoogle Scholar
  137. Mieszkin S, Furet JP, Gourmelon M et al (2010) Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl Environ Microbiol 75(10):3045–3054CrossRefGoogle Scholar
  138. Mills DK, Entry JA, Mathee K et al (2007) Assessing microbial community diversity using amp icon length heterogeneity polymerase chain reaction. Molecular-Based Approaches to Soil Microbiology Symposium 71(2): 572–578Google Scholar
  139. Miura T, Masago Y, Omura T et al (2009) Detection of bacteria and enteric viruses from river and estuarine sediment. J Water Environ Technol. 7(4):307–316CrossRefGoogle Scholar
  140. Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24(6):954–958PubMedGoogle Scholar
  141. Morrison CR, Bachoon DS, Gates KW (2008) Quantification of enterococci and bifidobacteria in Georgia estuaries using conventional and molecular methods. Water Res 42(14): 4001–4009PubMedCrossRefGoogle Scholar
  142. Mushi DW, Byamukama D, Kivaisi KA et al (2010) Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands. J Water Health 8(3):466–478PubMedCrossRefGoogle Scholar
  143. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322PubMedCrossRefGoogle Scholar
  144. Nebra Y, Bonjoch X, Blanch AR (2003) Use of Bifidobacterium dentium as an indicator of the origin of fecal water pollution. Appl Environ Microbiol 69:2651–2656PubMedCrossRefGoogle Scholar
  145. Nieman J, Brion GM (2003) Novel bacterial ratio for predicting faecal age. Water Sci Technol 47:45–49PubMedGoogle Scholar
  146. Nocker A, Camper A K (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997–2004PubMedCrossRefGoogle Scholar
  147. Nocker A, Cheung C, Camper AK (2006) Comparison of propidium monozide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth 67:310–320CrossRefGoogle Scholar
  148. Nocker A, Sossa-Fernandez P, Camper A K et al (2007a) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73:5111–5117PubMedCrossRefGoogle Scholar
  149. Nocker A, Sossa KE, Camper AK (2007b) Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Meth 70: 252–260CrossRefGoogle Scholar
  150. Nocker A, Camper AK (2009) Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett 291:137–142PubMedCrossRefGoogle Scholar
  151. Nogva H, Dromtorp S, Rudi K et al (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34(4):804–813PubMedGoogle Scholar
  152. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  153. Okabe S, Okayama N, Ito T et al (2007a) Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Environ Microbiol 74:890–901Google Scholar
  154. Okabe S, Shimazu Y (2007b) Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biot 76:935–944CrossRefGoogle Scholar
  155. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33PubMedCrossRefGoogle Scholar
  156. Oshiro RK, Olson BH (1997) Occurrence of STh toxin gene in wastewater. In: Kay D, Fricher C (ed), Coliforms and E coli: problem or solution? The Royal Society of Chemistry, Cambridge. pp 255–259Google Scholar
  157. Ottoson JR (2009) Bifidobacterial survival in surface water and implications for microbial source tracking. Can J Microbiol 55(6):642–647PubMedCrossRefGoogle Scholar
  158. Pan, Y, Breidt F (2007) Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73:8028–8031PubMedCrossRefGoogle Scholar
  159. Paster BJ, Dewhirst FE, Olsen I et al (1994) Phylogeny of Bacteroides, Prevotella and Porphyromonas spp. and related bacteria. J Bacteriol 176(3):725–732PubMedGoogle Scholar
  160. Pourcher AM, Devriese LA, Hernandez JF et al (1991) Enumeration by a miniaturized method of Escherichia-Coli, Streptococcus bovis and enterococci as indicators of the origin of fecal pollution of waters. J Appl Bacteriol 70:525–530PubMedCrossRefGoogle Scholar
  161. Provence DL, Curtiss R (1994) Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun 62:1369–1380PubMedGoogle Scholar
  162. Rajal VB, McSwain BS, Wuertz S et al (2007) Validation of hollow fiber ultrafiltration and real time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Res 41(7):1411–1422PubMedCrossRefGoogle Scholar
  163. Ram JL, Ritchie RP, Selegean JP et al (2004) Sequence-based source tracking of Escherichia coli based on genetic diversity of beta-glucuronidase. J Environ Qual 33:1024–1032PubMedCrossRefGoogle Scholar
  164. Rawsthorne H, Dock CN, Jaykus LA (2009) PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol 75: 2936–2939PubMedCrossRefGoogle Scholar
  165. Reischer GH, Kasper DC, Farnleitner AD et al (2006) Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72:5610–5614PubMedCrossRefGoogle Scholar
  166. Reischer GH, Kasper DC, Mach RL et al (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett Appl Microbiol 44(4):351–356PubMedCrossRefGoogle Scholar
  167. Reischer GH, Haider JM, Farnleitner AH et al (2008) Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ Microbiol 10(10): 2598–2608PubMedCrossRefGoogle Scholar
  168. Reischer GH, Haider JM, Farnleitner AH et al (2009) A global assessment of the source specificity, sensitivity and geographical stability of Bacteroides qPCR assays for microbial source tracking. Proceedings of the 15th International Symposium on Health-Related Water Microbiology, 31 May–5 June 2009 Naxos, GreeceGoogle Scholar
  169. Reischer GH, Kollanur D, Vierheilig J et al (2011) Hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environ Sci Technol 45(9):4038–4045Google Scholar
  170. Resnick IG, Levin MA (1981a) Assessment of bifidobacteria as indicators of human fecal ­pollution. Appl Environ Microbiol 42:433–438PubMedGoogle Scholar
  171. Resnick IG, Levin MA (1981b) Quantitative procedure for enumeration of bifidobacteria. Appl Environ Microbiol 42:427–432PubMedGoogle Scholar
  172. Rhodes MW, Kator H (1999) Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. J Appl Microbiol 87:528–535PubMedCrossRefGoogle Scholar
  173. Richter DD, Markewitz D (1995) How deep is soil – soil, the zone of the earths crust that is biologically-active, is much deeper than has been thought by many ecologists. Bioscience 45:600–609CrossRefGoogle Scholar
  174. Roll BM, Fujioka RS (1997) Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality. Water Sci Technol 35(11):179–186CrossRefGoogle Scholar
  175. Rosario K, Symonds EM, Breitbart M et al (2009) Pepper mild mottle virus as an indicator of fecal pollution. Appl Environ Microbiol 75(22):7261–7267PubMedCrossRefGoogle Scholar
  176. Roslev P, Bastholm S, Iversen N (2008) Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Poll 194:13–21CrossRefGoogle Scholar
  177. Rowbotham TJ, Cross T (1977) Ecology of Rhodococcus coprophilus and associated Actinomycetes in fresh water and agricultural habitats. J Gen Microbiol 100:231–240Google Scholar
  178. Rudi K, Moen B, Holck AL et al (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024PubMedCrossRefGoogle Scholar
  179. Sadowsky MJ, Call DR, Santo Domingo JW (2007) The future of microbial source tracking studies. In: Santo Domingo JW, Sadowsky MJ (eds) Microbial source tracking. Washington, DC: ASM Press, pp. 235–277Google Scholar
  180. Santoro AE, Boehm AB (2007) Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides and traditional indicators. Environ Microbiol. doi:10.1111/j.1462-2920.2007.01319.x PubMedGoogle Scholar
  181. Saunders AM, Kristiansen A, Schramm A et al (2009) Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water. Syst Appl Microbiol 32(5):362–370PubMedCrossRefGoogle Scholar
  182. Savill MG, Murray SR, Gilpin BJ et al (2001) Application of polymerase chain reaction (PCR) and TaqManTM PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J Microbiol Meth 47:355–368CrossRefGoogle Scholar
  183. Schriewer A, Miller WA, Byrne BA et al (2010) Bacteroidales as a predictor of pathogens in surface waters of the central California coast. Appl Environ Microbiol 76:5802–5814PubMedCrossRefGoogle Scholar
  184. Scott TM, Jenkins TM, Rose JB et al (2005) Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ Sci Technol 39:283–287PubMedCrossRefGoogle Scholar
  185. Scott TM, Harwood VJ, Ahmed W et al (2009) Comment on “environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination”. Environ Sci Technol 43:6434–6435PubMedCrossRefGoogle Scholar
  186. Seurinck S, Defoirdt T, Sciliano S et al (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol 7(2):249–259PubMedCrossRefGoogle Scholar
  187. Shanks OC, Santo Domingo JW, Graham JE et al (2006a) Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 72:4054-4060PubMedCrossRefGoogle Scholar
  188. Shanks OC, Nietch C, Field KG et al (2006b) Basin-wide analysis of the dynamics of fecal contamination and fecal source identification in Tillamook Bay, Oregon. Appl Environ Microbiol 72(8):5537–5546PubMedCrossRefGoogle Scholar
  189. Shanks OC, Santo Domingo JW, Graham JE et al (2007) Identification of bacterial DNA markers for the detection of human fecal pollution in water. Appl Environ Microbiol 73:2416–2422PubMedCrossRefGoogle Scholar
  190. Shanks OC, Atikovic E, Haugland RA et al (2008) Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74:745–752PubMedCrossRefGoogle Scholar
  191. Shanks OC, Kelty CA, Haugland RA et al (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75(17):5507–5513PubMedCrossRefGoogle Scholar
  192. Shanks OC, White K, Haugland RA (2010) Performance assessment PCR-based assays targeting Bacteroidales genetic markers of bovine fecal pollution. Appl Environ Microbiol 76(5):1359–1366PubMedCrossRefGoogle Scholar
  193. Siefring S, Varma M, Haugland RA (2008) Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems. J Water Health 6(2):225PubMedCrossRefGoogle Scholar
  194. Silkie SS, Nelson KL (2009) Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Water Res 43(19):4860–4871PubMedCrossRefGoogle Scholar
  195. Simpson JM, Santo Domingo JW, Reasoner DJ (2004) Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. FEMS Microbiol Ecol 47(1):65–75PubMedCrossRefGoogle Scholar
  196. Sirikanchana K, Wang D, Bombardelli FA et al. Microbial source tracking using Bacteroidales and quantification of bacterial indicators and human pathogens in a major estuary. Submitted Google Scholar
  197. Skanavis C, Yanko WA (2001) Clostridium perfringens as a potential indicator for the presence of sewage solids in marine sediments. Mar Pollut Bull 42:31–35PubMedCrossRefGoogle Scholar
  198. Soejima T, Iida K, Yoshida S et al (2007) Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria. Microbiol Immunol 51:763–775PubMedGoogle Scholar
  199. Sorensen DL, Eberl SG, Dicksa RA (1989) Clostridium perfringens as a point-source indicator in non-point polluted streams. Water Res 23:191–197CrossRefGoogle Scholar
  200. Soule M, Kuhn E, Call DR et al (2006) Using DNA microarrays to identify library-independent markers for bacterial source tracking. Appl Environ Microbiol 72(3):1843–1851PubMedCrossRefGoogle Scholar
  201. Stapleton CM, Kay D, Wyer MD, et al. (2009) Evaluating the operational utility of a Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Res 43:4888–4899PubMedCrossRefGoogle Scholar
  202. Stewart MH, Olson B (1996) Bacterial resistance to potable water disinfectants. In: Hurst CJ (ed) Modeling disease transmission and its prevention by disinfection. Cambridge: Cambridge University Press, pp 140–192Google Scholar
  203. Stoeckel DM, Stelzer EA, Dick LK (2009) Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies. Water Res 43(19): 4820–4827PubMedCrossRefGoogle Scholar
  204. Stricker AR, Wilhartitz I, Mach RL et al (2008) Development of a scorpion probe-based real-time PCR for the sensitive quantification of Bacteroides sp. ribosomal DNA from human and cattle origin and evaluation in spring water matrices. Microbiol Res 163(2):140–147PubMedCrossRefGoogle Scholar
  205. Suau A, Bonnet R, Sutren M et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807PubMedGoogle Scholar
  206. Tallon P, Magajna B, Lofranco C et al (2005) Microbial indicators of faecal contamination in water: A current perspective. Water Air Soil Poll 166:139–166CrossRefGoogle Scholar
  207. Tsai YL, Le JY, Olson BH (2003) Magnetic bead hybridization to detect enterotoxigenic Escherichia coli strains associated with cattle in environmental water sources. Can J Microbiol 49:391–398PubMedCrossRefGoogle Scholar
  208. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRefGoogle Scholar
  209. Ufnar JA, Wang SY, Ellender RD et al (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52PubMedCrossRefGoogle Scholar
  210. Ufnar JA, Ufnar DF, Ellender RD et al (2007a) Development of a swine-specific fecal pollution marker based on host differences in Methanogen mcrA genes. Appl Environ Microbiol 73(16): 5209–5217PubMedCrossRefGoogle Scholar
  211. Ufnar JA, Wang SY, Ellender RD et al (2007b) Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol, 73(21): 7118–7121PubMedCrossRefGoogle Scholar
  212. Vesper S, McKinstry C, Vesper A et at (2008) Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J Microbiol Meth 72:180–184CrossRefGoogle Scholar
  213. Wade T, Calderon RL, Dufour AP (2006) Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Persp 114(1):24–28CrossRefGoogle Scholar
  214. Wagner AO, Malin C, Illmer P et al (2008) Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Appl Environ Microbiol 74:2537–2539PubMedCrossRefGoogle Scholar
  215. Walters SP, Field KG (2006) Persistence and growth of fecal Bacteroidales assessed by bromodeoxyuridine immunocapture. Appl Environ Microbiol 72(7):4532–4539PubMedCrossRefGoogle Scholar
  216. Walters SP, Yamahara KM, Boehm AB (2009) Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res 43(19):4929–4939PubMedCrossRefGoogle Scholar
  217. Wang D, Silkie SS, Nelson K et al (2010) Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method. Water Res 44(16):4760–4775PubMedCrossRefGoogle Scholar
  218. Ward JW, Reed TM, Fryar AE et al (2009) Using the AC/TC ratio to evaluate fecal inputs in a karst groundwater basin. Environ Eng Geosci 15:57–65CrossRefGoogle Scholar
  219. Weisburg WG, Barns SM, Lane DJ et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedGoogle Scholar
  220. Wheeler AL, Hartel PG, Godfrey DG et al (2002) Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J Environ Qual 31:1286–1293PubMedCrossRefGoogle Scholar
  221. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. P Natl Acad Sci USA 95:6578–6583CrossRefGoogle Scholar
  222. Whitman RL, Przybyla-Kelly K, Shively DA et al (2007) Incidence of the enterococcal surface protein (esp) gene in human and animal fecal sources. Environ Sci Technol 41:6090–6095PubMedCrossRefGoogle Scholar
  223. Wilhartitz I, Mach RL, Teira E et al (2007) Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. J Appl Microbiol 103:871–881PubMedCrossRefGoogle Scholar
  224. Wittwer CT, Herrman MG, Moss AA (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1):130PubMedGoogle Scholar
  225. Wong M, Kumar L, Rose JB et al (2009) Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker. Water Res 43 (4):1137–1149PubMedCrossRefGoogle Scholar
  226. Wuertz S, Bombardelli F, Sirikanchana K et al (2009) Quantitative pathogen detection & microbial source tracking combined with modeling the fate and transport of Bacteroidales in San Pablo Bay. CICEET report: http://ciceet.unh.edu/news/releases/fall09_reports/pdf/wuertz06_fr_fall06.pdf
  227. Xu J, Bjursell MK, Gordon GI et al (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076PubMedCrossRefGoogle Scholar
  228. Yampara-Iquise H, Zheng G, Carson CA et al (2008) Use of a Bacteroides thetaiotaomicron-specific alfa-1-6, mannanase quantitative PCR to detect human faecal pollution in water.J Appl Microbiol 105:1686–1693PubMedCrossRefGoogle Scholar
  229. Zheng G, Yampara-Iquise H, Carson CA et al (2009) Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. J Appl Microbiol 106:634–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stefan Wuertz
    • 1
  • Dan Wang
  • Georg H. Reischer
  • Andreas H. Farnleitner
  1. 1.Department of Civil and Environmental EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations