Skip to main content

Environmental Persistence and Naturalization of Fecal Indicator Organisms

  • Chapter
  • First Online:
Book cover Microbial Source Tracking: Methods, Applications, and Case Studies

Abstract

Fecal indicator bacteria, including total and fecal coliforms, Escherichia coli, and enterococci have been used to indicate the presence of fecal contamination in water used for drinking, shellfishing, and recreation. The assumptions behind the concept of using fecal indicator bacteria (total coliforms, fecal coliforms, E. coli, and enterococci) are that these organisms are normal inhabitants of the gastrointestinal tracts of humans and animals and are incapable of long-term survival or replication outside of their hosts. These assumptions must be valid if FIB levels in water are used to ensure the microbial safety in water and to identify “fecally contaminated” areas, which is essential to microbial source tracking (MST) studies. However, after utilization of total coliforms in the 1920s and fecal coliforms in the 1980s, studies showed that these groups of indicator bacteria failed to meet these assumptions because they include strains that are naturally occurring in nonfecal sources (i.e., soil, vegetation, and water) and are capable of persisting and regrowing in the environment. In the 1980s, E. coli and enterococci were recommended for use as FIB because they were believed to be more specific to fecal waste. Recent studies have shown that these bacteria also failed to meet the criteria for FIB.

The continuing practice of implementing fecal indicator organisms without understanding their persistence and survivability in the environment has hindered the ability to determine their significance in water and to accurately assess human health risks. This chapter discusses the natural occurrence of total coliforms, fecal coliforms, E. coli, and enterococci and explains key survival mechanisms, such as biofilm development and transitioning to the viable but nonculturable (VBNC) state, which can allow them to persist and regrow in various environmental habitats. Understanding how and where fecal indicators can survive in the environment could be useful to MST studies to account for fecal indicator ­bacteria from natural sources. The information gained from these studies could be applied to studies evaluating MST methods employing new, alternative indicators such as Bacteroides spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm E, Burke WJ, Hagan E (2006) Persistence and potential growth of the fecal indicator bacteria, Escherichia coli, in shoreline sand at Lake Huron. J Great Lakes Res 32:401–405

    Article  Google Scholar 

  • Anderson SA, Turner SJ, Lewis GD (1997) Enterococci in the New Zealand environment: implications for water quality monitoring. Water Sci Technol 35:325–331

    Article  CAS  Google Scholar 

  • Anderson KL, Whitlock J, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71:3041–3048

    Article  PubMed  CAS  Google Scholar 

  • Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol 41:93–137

    Article  PubMed  CAS  Google Scholar 

  • Banning N, Toze S, Mee BJ (2003) Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system. Microbiology 149:47–55

    Article  CAS  Google Scholar 

  • Bitton G, Farrah SR, Ruskin RH, Butner J and Chou YJ (1983) Survival of pathogenic and indicator organisms in ground water. Ground Water 21:405–410

    Article  Google Scholar 

  • Boaretti M, Lleò MM, Bonato B, Signoretto C, Canepari P (2003) Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ Microbiol 5:986–96

    Article  PubMed  CAS  Google Scholar 

  • Boehm A, Griffith J, McGee C, Edge TA, Solo-Gabriele HM, Whitman R, Cao Y, Getrich M, Jay JA, Ferguson D, Goodwin KD, Lee CM, Madison M, Weisberg S (2009) Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands. J Appl Microbiol 107:1740–1750

    Article  PubMed  CAS  Google Scholar 

  • Bonde JG (1966) Bacteriological Methods for Estimation of Water Pollution. Health Lab Sci 3:24

    Google Scholar 

  • Breeuwer P, Abee T (2000) Assessment of viability of microorganism employing fluorescence techniques. Intern J Food Microbiol 55:193–200

    Article  CAS  Google Scholar 

  • Buck JD (1979) The plate count in aquatic microbiology. In (eds) Costerton, JW, Colwell RR. Native aquatic bacteria: enumeration, activity and ecology. Amer. Soc. Test. Mat: 19–28

    Google Scholar 

  • Camper AK, McFeters GA, Charaklis WG, Jones WL (1991) Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems. Appl Environ Microbiol 7:2233

    Google Scholar 

  • Caplenas NR, Kanarek MS (1984) Thermotolerant non-fecal source Klebsiella pneumoniae: validity of the fecal coliform test in recreational waters. Am J Public Health 74:1273–1275

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1996) Global climate and infectious diseases: the cholera paradigm. Science 274:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR, Braiyton P, Herrington PD, Tall B, Huq A, Levine MM (1996) Viable but nonculturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotech 12:28–31

    Article  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  • Davenport CV, Sparrow EB, Gordon RC (1976) Fecal indicator persistence under natural conditions in an ice-covered river. Appl Environ Microbiol 32:527–536

    PubMed  CAS  Google Scholar 

  • Devriese LA, Van De Kerckhove A, Kilpper-bälz AR, Schleifer KH (1987) Characterization and identification of Enterococcus species isolated from the intestines of animals. Int J Syst Bacteriol 37:257–259

    Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  Google Scholar 

  • Edberg SC, Patterson JE, Smith DB (1994) Differentiation of distribution systems, source water, and clinical coliforms by DNA analysis. J Clin Microbiol 32:139–142

    PubMed  CAS  Google Scholar 

  • Fass S, Dincher ML, Reasoner DJ, Gatel D, Block JC (1996) Fate of Escherichia coli ­experimentally injected in a drinking water distribution pilot system. Water Res 30:2215–2221

    Article  CAS  Google Scholar 

  • Ferguson CM, Coote BG, Ashbolt NJ, Stevenson IM (1996) Relationships between indicators, pathogens and water quality in an estuarine water system. Water Res 30:2045–2054

    Article  CAS  Google Scholar 

  • Ferguson DM, Moore DF, Getrich MA, Zhowandai MH (2005) Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California. J Appl Microbiol 99:598–608

    Article  PubMed  CAS  Google Scholar 

  • Filip Z, K. Demnorova (2009) Survival in groundwater and FT-IR characterization of some pathogenic and indicator bacteria. In: Jones, AAA, Vardania, TG, C Hakopian (eds) Threats to Global Water Security, Springer, Dordrecht p 117–122

    Google Scholar 

  • Fujioka RS, Tenno K and Kansako S (1988) Naturally-occurring fecal coliforms and fecal streptococci in Hawaii’s freshwater streams. Toxicol Assess 3:613–630

    Article  Google Scholar 

  • Ganeshwar P, EK James, N Mathan, PM Reddy, B Reinhold-Hurek, JK Ladha (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  Google Scholar 

  • Gauthier MJ, LeRudulier D (1990) Survival in seawater of E. coli seawater cells grown in sediments containing glycine betine. Appl Environ Microbiol 56:2915–2918

    PubMed  CAS  Google Scholar 

  • Geldreich, EE (1996) Microbial quality of water supply in distribution systems. Lewis Publishers, Boca Raton

    Google Scholar 

  • Gerba CP, JS McLeod (1976) Effect of sediments on the survival of Escherichia coli in marine waters. Appl Eviron Microbiol 32:114–120

    CAS  Google Scholar 

  • Gilmore, MS, Coburn PS, Nallapareddy SR, Murray BE (2002) Enterococcal virulence. In Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB (eds) The enterococci: pathogenesis, molecular biology and antibiotic resistance, ASM Press, Washington, pp 301–354

    Google Scholar 

  • Hartl DL, DE Dykhuizen (1984) The population genetics of Escherichia coli. Annu Rev Genet18:31–68

    Article  PubMed  CAS  Google Scholar 

  • Hartz A, M Cuvelier, K Nowosielski (2008) Survival potential of Escherichia coli and enterococci in subtropical beach sand: implications for water quality managers. J Environ Qual 37:898–905

    Article  PubMed  CAS  Google Scholar 

  • Heim S, MM Lleò, B Bonato, CA Guzman, P Canepari (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis as determined by proteome analysis. J Bacteriol 184:6739–7645

    Article  PubMed  CAS  Google Scholar 

  • Huycke, MM (2002) Physiology of enterococci. In Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE and Rice LB (eds) The enterococci: pathogenesis, molecular biology and antibiotic resistance, ASM Press, Washington, pp 133–176

    Google Scholar 

  • Ishii S, WB Ksoll, RE Hicks, ML Sadowski (2006) Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl Environ Microbiol 72:612–621

    Article  PubMed  CAS  Google Scholar 

  • Kogure S, U Simidu, N Taga (1979) A tentative direct microscopic method for counting living bacteria. Can J Microbiol 25:415–420

    Article  PubMed  CAS  Google Scholar 

  • Lacey GH, FL Lukezic (2004) Pathogenic Prokaryotes In: RN Trigiano, MT Windham, AS Windham (eds) Plant pathology: concepts and laboratory exercises, CRC Press, Boca Raton.

    Google Scholar 

  • Lauková A, Juriš, P (1997) Distribution and characterization of Enterococcus species in municipal sewages. Microbios 89:73–80

    PubMed  Google Scholar 

  • LeChevallier MW, Lowry CD, Lee RG (1990) Disinfection of biofilms in a model distribution system. J Am Water Works Assoc 82:87–99

    CAS  Google Scholar 

  • Leclerc H, DAA Mossel, SC Edberg, CB Struijk (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, TY Lin, C-C Lin, GA Kohbodi, A Bhatt, R Lee, JA Jay (2006) Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res 40:2593–2602

    Article  PubMed  CAS  Google Scholar 

  • Lleò MM, B Bonato, MC Tafi, C Signoretto, M Boaretti, P Canepari (2001) Resuscitation rate in different enterococcal species in the viable but nonculturable state. J Appl Microbiol 91:1095–1102

    Article  PubMed  Google Scholar 

  • Lleò MM, S Pierobon, MC Tafi, C Signoretto, P Canepari (2000) mRNA detection by RT-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 66:4564–4567

    Article  PubMed  Google Scholar 

  • Lleò MM, C Signoretto, P Canepari (2006) Gram-positive bacteria in the marine environment. In Belkin S, Colwell RR (eds) Ocean and Health: pathogens in the marine environment. Springer, New York, p 307–330

    Google Scholar 

  • Lleò MM, MC Tafi, P Canepari (1998) Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst Appl Microbiol 21:333–339

    Article  PubMed  Google Scholar 

  • Manero A, S Vilanova, M Cerdá-Cuéllar, AR Blanch (2002) Characterization of sewage waters by biochemical fingerprinting of enterococci. Water Res 36:2831–2835

    Article  PubMed  CAS  Google Scholar 

  • McClellan S, AD Daniels, AK Salmore (2001) Clonal populations of thermotolerant Enterobacteriaceae and their potential interference with fecal Escherichia coli counts. Appl Environ Microbiol 67:4934–4938

    Article  Google Scholar 

  • McCoy EL, C Hagedorn (1979) Quantitatively tracing bacterial transport in saturated soil systems. Water Air Soil Pollut 11:467–479

    Article  Google Scholar 

  • McFarlane S, McFarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211

    Article  Google Scholar 

  • Momba MNB, R Kfir, SN Venter and TE CLoete (2000) An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA 26:59–66

    Google Scholar 

  • Moore DF, JA Guzman, C McGee (2008) Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. J Appl Microbiol 105:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Moriarty E, F Nourozi, B Robson, D Wood, B Gilpin (2008) Evidence of growth of enterococci in municipal oxidation ponds obtained using antibiotic resistance analysis. Appl Environ Microbiol 74:7204–7210

    Article  PubMed  CAS  Google Scholar 

  • Mundt JO (1961) Occurrence of enterococci: bud, blossom, and soil studies. Appl Environ Microbiol 9:541–544

    CAS  Google Scholar 

  • Mundt JO (1963) Occurrence of enterococci on plants in a wild environment. Appl Environ Microbiol 15:1303–1308

    Google Scholar 

  • Mundt JO (1982) The ecology of the streptococci. Microbiol Ecol 8:355–369

    Article  Google Scholar 

  • Oliver JD, R Bockian (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol 61:2620–2623

    PubMed  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol. 43:93–100

    PubMed  Google Scholar 

  • Oliver JD (2009) Recent finding on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev. 1-11 DOI:10.1111/j.1574-6976.2009.00200.x.

  • Olson BH, R McCleary, J Meeker (1991) Background and models for bacterial biofilm formation and function in water distribution systems. In Hurst (ed) Modeling the environmental fate of microorganisms. ASM, Washington. pp 255–282

    Google Scholar 

  • Ott E.-M, Müller T, Müller M, Fran CMAP, Ulrich A, Gabel M, Seyfarth W (2001) Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. J Appl Microbiol 91:54–66

    Article  PubMed  CAS  Google Scholar 

  • Pinto B, Pierotti R, Canale G, Reali D (1999) Characterization of ‘faecal streptococci’ as indicators of faecal pollution and distribution in the environment. Lett Appl Microbiol 29:258–263

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, R Kolter (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Pruzzo C, R Tarsi, MM Lleò, C Signoretto, M Zampini, RR Colwell, P Canepari (2002) In vitro adhesion to human cells by viable but nonculturable Enterococcus faecalis. Curr Microbiol 45:105–110

    Article  PubMed  CAS  Google Scholar 

  • Pruzzo C, R Tarsi, MM Lleò, C Signoretto, M Zampini, L Pane, RR Colwell, P Canepari (2003) Persistence of adhesive properties of Vibrio cholerae after long term exposure to sea water. Environ Microbiol 5:650–658

    Article  Google Scholar 

  • Rivera SC, TC Hazen, GA Toranzos (1988) Isolation of fecal coliforms from pristine sites in a tropical rain forest. Appl Environ Microbiol 54:513–517

    PubMed  CAS  Google Scholar 

  • Roszak DB, RR Colwell (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Roth BL, M Poot, ST Yue, PJ Millard (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–243

    PubMed  CAS  Google Scholar 

  • Rozen Y, Belkin S (2001) Survival of enteric bacteria in seawater. FEMS Microbiol Rev 25:513–529

    Article  PubMed  CAS  Google Scholar 

  • Shaw MK, AG Marr, JL Ingraham (1971) Determination of minimal temperature growth of Escherichia coli. J Bacteriol 105:683–684

    PubMed  CAS  Google Scholar 

  • Signoretto C, G Burlacchini, MM Lleò, C Pruzzo, M Zampini, L Pane, G Franzini, P Canepari (2004) Adhesion of Enterococcus faecalis in the nonculturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater. Appl Environ Microbiol 70:6892–689

    Article  PubMed  CAS  Google Scholar 

  • Signoretto C, G Burlacchini, C Pruzzo, P Canepari (2005) Persistence of Enterococcus faecalis in aquatic environments with copepods. Appl Environ Microbiol 71:2756–2761

    Article  PubMed  CAS  Google Scholar 

  • Signoretto C, P Canepari (2008) Towards more accurate detection of pathogenic Gram-positive bacteria in waters. Curr Opin Biotech 19:248–253

    Article  PubMed  CAS  Google Scholar 

  • Signoretto C, MM Lleò, P Canepari (2002) Modification of the peptidoglycan of Escherichia coli in viable but nonculturable state. Curr Microbiol 44:125–131

    Article  PubMed  CAS  Google Scholar 

  • Signoretto C, MM Lleò, MC Tafi, P Canepari (2000) Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol 66:1953–1959

    Article  PubMed  CAS  Google Scholar 

  • Simpson JM, JW Santo Domingo, DJ Reasoner (2002) Microbial source tracking:state of the ­science. Environ Sci Technol 36(24):5279–88

    Article  PubMed  CAS  Google Scholar 

  • Sinton LW, CH Hall, PA Lynch, RJ Davies-Colley (2002) Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol 68:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, JP Howington, GA McFeters (1994) Survival, physiological response, and recovery of enteric bacteria exposed to a polar marine environment. Appl Environ Microbiol 60:2977–2984

    PubMed  CAS  Google Scholar 

  • Solo-Gabriele, HM, Wolfert, MA, Desmarais, TR, CJ Palmer (2000) Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol 66:230–237

    Article  PubMed  CAS  Google Scholar 

  • Stevens M, N Ashbolt, D Cunliffe (2003) Recommendations to change the use of coliforms as microbial indicators of drinking water quality NHMRC (National Health and Medical Research Council) Accessed Dec 20 2010 http://www.nhmrc.gov.au

  • Svec P, I. Sedlacek (1999) Occurrence of Enterococcus spp. in waters. Folia Microbiol 44:3–10

    Article  CAS  Google Scholar 

  • Szabo JG, EW Rice, L Bishop (2006) Persistence of Klebsiella pneumoniae on simulated biofilm in a model drinking water system. Environ Sci Technol 40:4996–5002

    Article  PubMed  CAS  Google Scholar 

  • Tay STL, S Ivapow, S Yi, W-Q Zhang, J-H Tay (2002) Presence of anaerobic bacteroides in aerobically grown microbial granules. Microbiol Ecol 44:278–285

    Article  CAS  Google Scholar 

  • Taylor RF, M Ikawa, W Chesbro (1971) Carotenoid in yellow-pigmented enterococci. J Bacteriol 105:676–678

    PubMed  CAS  Google Scholar 

  • Tendolkar PM, AS Baghdayan, MS Gilmore and N Shankar (2004) Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72:6032–6039

    Article  PubMed  CAS  Google Scholar 

  • Topp E, Welsh M, Tien YC, Dang A, Lazarovits G, Zhu H (2003) Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol Ecol 44:303–308

    Article  PubMed  CAS  Google Scholar 

  • Ulrich A, Müller T (1998) Heterogeneity of plant associated streptococci as characterized by phenotypic features and restriction analysis of PCR amplified 16S rDNA. J Appl Microbiol 84:292–303

    Article  Google Scholar 

  • USEPA (1986) Ambient water quality criteria for bacteria. EPA 440/5-84-002, Washington, DC

    Google Scholar 

  • USEPA (2002) Health risks from microbial growth and biofilms in drinking water distribution systems. Distribution system white paper, Office of Ground Water and Drinking Water Standards and Risk Management Division, Washington, DC

    Google Scholar 

  • USEPA (2005) Microbial Source Tracking Guide Document. Office of Research and Development, Washington, DC EPA-600/R-05/064. 131 pp.

    Google Scholar 

  • Valiela I, Alver M, LaMontagne M (1991) Fecal coliform loadings and stocks in Buttermilk Bay, Massachusetts, USA, and management implications. Environ Manage 15:659–674

    Article  Google Scholar 

  • Whitam TS (1989) Clonal dynamics of Escherichia coli in its natural habitat. Antonie van Leeuwenhoek 55:23–32

    Article  Google Scholar 

  • Whitman RL, Nevers MB (2003) Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl Environ Microbiol 69:555–5562

    Google Scholar 

  • Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN (2003) Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69:4714–4719

    Article  PubMed  CAS  Google Scholar 

  • Whitman RL, Byers SE, Shively DA, Ferguson DM, Byappanahalli M (2005) Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.) Can J Microbiol 51:1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Willey BM, Jones RN, McGeer A, Witte W, French G, Roberts RB, Jenkins SG, Nadler H (1999) Practical approach to the identification of clinically relevant Enterococcus species. Diagn Microbiol Infect Dis 34:165–171

    Article  PubMed  CAS  Google Scholar 

  • Yamahara KM, B Layton, AE Santoro, AB Boehm (2007) Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ Sci Technol 41:4515–4521

    Article  PubMed  CAS  Google Scholar 

  • Xu HS, Roberts NC, Singleton FL, Attwill RW, Grimes DJ, Colwell RR (1982) Microbiol Ecol 8:313–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferguson, D., Signoretto, C. (2011). Environmental Persistence and Naturalization of Fecal Indicator Organisms. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_17

Download citation

Publish with us

Policies and ethics